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ABSTRACT 

  
Quantum computers, but still with a low number of qubits, are starting to emerge as we write. It is more crucial than 

ever to work on new cryptosystems. Cryptosystems that will be based on mathematical problems that are robust 

enough to withstand the increased computational power that these new types of computers will provide. In the 

course of our research, we came across the mathematical object that is the Lattice. The latter is one of the 

promising candidates in terms of fundamental problem for post-quantum cryptosystems. But the mathematical tool 

on which we will open this article is the MLWE or Module Learning With Error. The LWE (or Learning With 

Error), in the first instance, is a generalization of the problem Learning from parity with error. It has been shown 

that this problem is equivalent, in terms of difficulty, to the SIVP or Shortest Independent Vector Problem of a 

lattice. Coming back to MLWE, we have another designation, Learning With Error other Module Lattices. Module 

lattices can be considered as lattices between those used in the LWE problem definitions and those used for the R-

LWE problem (Ring LWE). The Module-LWE offers a compromise between the two extremes of the LWE and the R-

LWE. Thereafter we will focus on the CRYSTALS cryptosystem, a cryptosystem based on the MLWE. Our choice to 

study this cryptosystem is based on the fact that it was submitted to the NIST (National Institute of Standards and 

Technology) project of post-quantum cryptosystem standardization. CRYSTALS was able to progress to step 3 of the 

project. But above all, it is the only one among the few that have progressed to this final stage, to have both a KEM 

type cryptosystem (Key Encapsulation Mechanism) and another signature type one. 

 

Keyword: Quantum Computer, Post Quantum Cryptosystem, Module LWE, CRYSTALS-Kyber, CRYSTALS-

Dilithium, Key Encapsulation Mechanism (KEM), Signature. 

 
 

 The MLWE 1.

 

Most lattice-based cryptographic schemes are built on the assumed difficulty of Short Integer Solution (SIS) and 

Leaning With Error (LWE). Their effectiveness can be improved by shifting the difficulty assumptions to the more 

compact Ring-SIS and Ring-LWE problems. However, this change in difficulty assumptions is accompanied by a 

weakening of security: SIS and LWE are known to be at least as difficult as standard (worst case) problems on 

Euclidean lattices (classical version of lattices), while Ring-SIS and Ring-LWE have the same level of difficulty 

only for their restrictions to special classes of ideal lattices, corresponding to the ideal of some polynomial rings. [7] 
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The present subtitle of our work consists of the definition of Module-SIS and, especially, Module-LWE problems, 

which link SIS with Ring-SIS, and LWE with Ring-LWE, respectively. These average case problems are at least as 

difficult as the standard lattice problems restricted to module lattices (the latter, module lattices, in turn, serve as a 

middle ground between arbitrary lattices and ideal lattices). It is important to note that the worst case to average case 

reductions for modulus problems are strong, in the sense that there are inverse reductions. This property is not 

known to hold in the context of Ring-SIS / Ring-LWE: problems with ideal lattices could be easy without affecting 

the difficulty of Ring-SIS / Ring-LWE. 

 

 LWE variants 1.1.

 

1.1.1. LWE 

 

Let 𝕋 = ℝ/ℤ denote the segment [0,1) with the addition operation modulo 1. For a probability density function 𝜒 

on 𝕋 and a vector 𝑠 ∈ ℤ𝑞
𝑛, we posit 𝐴𝑠,𝜒 the distribution on ℤ𝑞

𝑛 × 𝕋 obtained by choosing a vector 𝑎 ∈ ℤ𝑞
𝑛 uniformly 

and in a random fashion, then 𝑒 ∈ 𝕋 by respect to 𝜒, and returning (𝑎,
1

𝑞
〈𝑎, 𝑠〉 + 𝑒). 

 

Definition 01: 

 

The search version of the Learning With Error problem SLWE𝑞,𝜒 is as follows: let 𝑠 ∈ ℤ𝑞
𝑛 be a secret; given several 

samples from 𝐴𝑠,𝜒, the goal is to find 𝑠. 

 

The decision version of the Learning With Error problem LWE𝑞,𝜒 is as follows: let 𝑠 ∈ ℤ𝑞
𝑛 be chosen in a uniformly 

random fashion; the goal is to distinguish between several independent samples from 𝐴𝑠,𝜒 and the same number of 

independent samples from 𝑈(ℤ𝑞
𝑛 × 𝕋). Where 𝑈 refers to a uniform distribution, on the set ℤ𝑞

𝑛 × 𝕋 in this case 

therefore. 

 

It is also possible to interpret the LWE in terms of linear algebra: Suppose the number of samples required 

(𝑎𝑖 ,
1

𝑞
〈𝑎𝑖 , 𝑠〉 + 𝑒𝑖) from 𝐴𝑠,𝜒 is 𝑚, then we consider the matrix 𝐴 ∈ ℤ𝑞

𝑚×𝑛 whose rows are the 𝑎𝑖. And we will 

consider the vector 𝑒 = (𝑒1, … , 𝑒𝑚)
𝑇 . Then the SLWE is as follows: [3], [4] 

 

 
 

Figure 01: The LWE in terms of linear algebra. 

 

Theorem 01: 

 

Let 𝜀(𝑛) = 𝑛−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 ≥ 2 such that 𝛼𝑞 ≥ 2√𝑛. There is a quantum reduction from solving GIVP
√8𝑛/𝛼

𝜂𝜀  

in polynomial time (in the worst case, with high probability) to solving SLWE𝑞,𝐷𝛼 in polynomial time with nontrivial 

probability. 

 

Assuming 𝑞 is prime, 𝑞 ≤ poly(𝑛), and 𝜒 is a probability density function on 𝕋. Then there exists a reduction in 

polynomial time from SLWE𝑞,𝜒 to LWE𝑞,𝜒. 

 

The following theorem overrides the condition that q must be prime. 
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Theorem 02: 

 

Let 𝛼 > 0, 𝜀 ∈ (0, 1 2⁄ ), 𝑚 ≥ 𝑛 ≥ 1, 𝑝 ≥ 25 and 𝑞 ∈ [𝑝, 2𝑝). There exists a polynomial-time reduction from 

LWE𝑞,𝛼 to LWE𝑝,Ψ≤𝛽  where 𝛽 = 𝐶𝛼√𝑛√log(𝑛 𝜀⁄ ) log(𝑛𝑚 𝜀⁄ ), for a positive constant 𝐶, and which loses at most 𝜀 

in advantage. 

 

1.1.2. R-LWE 

 

Let 𝜓 be a distribution on 𝕋𝑅∨ = 𝐾ℝ/𝑅
∨ and 𝑠 ∈ 𝑅𝑞

∨. We denote by 𝐴𝑠,𝜓
(𝑅)

 the distribution over 𝑅𝑞 × 𝕋𝑅∨ obtained by 

choosing 𝑎 ∈ 𝑅𝑞  in a uniformly random manner and 𝑒 ∈ 𝕋𝑅∨ with respect to 𝜓, and returning (𝑎, (𝑎. 𝑠) 𝑞⁄ + 𝑒). 

 

Definition 02: 

 

Let 𝑞 ≥ 2 and Ψ be a family of distributions on 𝕋𝑅∨ . The search version of the Ring Learning With Error problem 

R-SLWE𝑞,Ψ is as follows: let 𝑠 ∈ 𝑅𝑞
∨ be secret, and 𝜓 ∈ Ψ ; given several samples from 𝐴𝑠,𝜓

(𝑅)
, the goal is to find 𝑠. 

 

Let Υ be a distribution over a family of noise distributions on 𝕋𝑅∨ . The decision version of the Ring Learning With 

Error problem R-SLWE𝑞,Υ is as follows: suppose 𝑠 ∈ 𝑅𝑞
∨ is uniformly random, and 𝜓 sampled from Υ ; the goal is to 

distinguish between multiple independent samples from 𝐴𝑠,𝜓
(𝑅)

 and the same number of independent samples from 

𝑈(𝑅𝑞 , 𝕋𝑅∨). 

 

Theorem 03: 

 

Let 𝜀(𝑛) = 𝑛−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 ≥ 2 of a known factorization such that 𝛼𝑞 > 𝜔(√log 𝑛). There is a quantum 

reduction from solving the Id-GIVP𝛾
𝜂𝜀 in polynomial time (in the worst case, with high probability) to solving the R-

SLWE𝑞,Ψ≤𝛼  in polynomial time with nontrivial probability with 𝛾 = √𝑛.𝜔(√log 𝑛) 𝛼⁄ . 

 

Assuming 𝑞 is prime, 𝑞 ≤ poly(𝑛), and 𝑞 = 1 mod 𝑣. Then there exists a polynomial time reduction from R-

SLWE𝑞,Ψ≤𝛼  to R-LWE𝑞,Υ𝛼 . 

 

1.1.3. LWE over modules 

 

The M-LWE generalizes the LWE and the R-LWE. The variable 𝑛 and 𝑑 denote the dimension of 𝑅 and the rank of 

the 𝑀 ⊆ 𝑅𝑑  module, respectively. We pose 𝑁 = 𝑛𝑑 the dimension of the lattice modulus. 

 

Let 𝜓 be a probability distribution on 𝕋𝑅∨  and 𝑠 ∈ (𝑅𝑞
∨)
𝑑

 a vector. We define by 𝐴𝑞,𝑠,𝜓
(𝑀)

 the distribution on (𝑅𝑞)
𝑑
×

𝕋𝑅∨ obtained by choosing a vector 𝑎 ∈ (𝑅𝑞)
𝑑

 uniformly random, and 𝑒 ∈ 𝕋𝑅∨ by respect to 𝜓, and returning 

(𝑎,
1

𝑞
〈𝑎, 𝑠〉 + 𝑒). 

 

Definition 03: 

 

Let 𝑞 ≥ 2 and Ψ be a family of distributions on 𝕋𝑅∨ . The search version of the Module Learning With Error 

problem M-SLWE𝑞,Ψ is as follows: Let 𝑠 ∈ (𝑅𝑞
∨)
𝑑

 be a secret vector and 𝜓 ∈ Ψ ; given arbitrarily many samples 

from 𝐴𝑞,𝑠,𝜓
(𝑀)

, the goal is to find 𝑠. 

For an integer 𝑞 ≥ 2 and a distribution Υ over a family of distributions on 𝐾ℝ. The decision version of the Module 

Learning With Error problem M-SLWE𝑞,Υ is as follows: Let 𝑠 ∈ (𝑅𝑞
∨)
𝑑

 be uniformly random and 𝜓 sampled over Υ; 

the goal is to distinguish between arbitrarily many random samples from 𝐴𝑞,𝑠,𝜓
(𝑀)

 and the same number of samples 

from 𝑈(𝑅𝑞
𝑑 × 𝕋𝑅∨). 
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As was the case with the LWE and R-LWE, the M-LWE problem can be interpreted in terms of linear algebra. It 

(the M-LWE) consists of taking the LWE matrix 𝐴 of the form: 

 

 
 

Figure 02: The M-LWE problem can be interpreted in terms of linear algebra. 

 

The difficulty of M-LWE is supported by the two theorems that follow. 

 

Theorem 04: 

 

Let 𝜀(𝑁) = 𝑁−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 ≥ 2 of a known factorization such that 𝛼𝑞 > 2√𝑑.𝜔(√log 𝑛). There is a 

quantum reduction from solving Mod-GIVP𝛾
𝜂𝜀 in polynomial time (in the worst case, with high probability) to 

solving M-SLWE𝑞,Ψ≤𝛼  in polynomial time with a nontrivial advantage with 𝛾 = √8𝑁𝑑.𝜔(√log 𝑛) 𝛼⁄ . 

 

Assuming 𝑞 is prime, 𝑞 ≤ poly(𝑁) and 𝑞 = 1 mod 𝑣. Then there exists a polynomial time reduction from M-

SLWE𝑞,Ψ≤𝛼  to M-LWE𝑞,Υ𝛼 . 

 

When 𝑛 = 𝑁 and 𝑑 = 1, Theorem 04 is equivalent to Theorem 03. When 𝑛 = 1 and 𝑑 = 𝑁, it (Theorem 04, again) 

is equivalent to Theorem 01. 

 

Theorem 05: 

 

Let 𝑝, 𝑞 ∈ [2, 2𝑁
𝑂(1)
] and 𝛼, 𝛽 ∈ (0,1) such that 𝛽 ≥ 𝛼.max (1,

𝑞

𝑝
) . 𝑛1 4⁄ 𝑁1 2⁄ . 𝜔(log2𝑁) and 𝛼𝑞 ≥ 𝜔√log(𝑁) 𝑛⁄ . 

There is a polynomial time reduction from M-LWE𝑞,Υ𝛼  to M-LWE𝑞,Υ𝛽 . 

 

 Reduction of Mod-GIVP to M-SLWE 1.2.

 

The reduction from Mod-GIVP to M-SLWE uses the following intermediate problem, where 𝜙 denotes a real-

valued function on a lattice and 𝛾 depends on the dimension, called the Module Discrete Gaussian Sampling 

Problem M-DGS𝛾
𝜙

: given a module lattice 𝑀 of dimension 𝑁, and a number 𝑟 > 𝛾 ∙ 𝜙, the goal is to return a sample 

from 𝐷𝑀,𝑟 . The reduction is done in 2 (two) steps: 

 

Mod-GIVP
√8𝑁𝑑∙𝜔(√log 𝑛) 𝛼⁄

𝜂𝜀
𝐋𝐞𝐦𝐦𝐚 𝟎𝟏
→       M-DGS

√2𝑑∙𝜔(√log 𝑛) 𝛼⁄

𝜂𝜀
𝐋𝐞𝐦𝐦𝐚 𝟎𝟐
→       M-SLWE𝑞,Ψ≤𝛼 
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Lemma 01: 
 

For any 𝜀 = 𝜀(𝑁) ≤ 1 10⁄  and any 𝛾 and 𝜙 such that 𝛾 ∙ 𝜙(𝑀) ≤ √2𝜂𝜀(𝑀), there exists a polynomial-time 

reduction of the Mod-GIVP
2√𝑁∙𝛾

𝜙
 to M-DGS𝛾

𝜙
. [3] 

 

Lemma 02: 

 

Let 𝜀(𝑁) = 𝑁−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 be an integer such that 𝛼𝑞 ≥ 2√𝑑 ∙ 𝜔(√log𝑛). Assuming we have access to 

an oracle that solves M-SLWE𝑞,Ψ≤𝛼 , given a polynomial number of samples. Then there exists a polynomial-time 

quantum algorithm for M-DGS
√2𝑑∙𝜔(√log 𝑛) 𝛼⁄

𝜂𝜀 . 

 

Lemma 03: 

 

Let 𝜀(𝑁) = 𝑁−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 ≥ 2. Assume that we have access to an oracle that solves M-SLWE𝑞,Ψ≤𝛼 in 

polynomial time with nontrivial probability. Then there exists a polynomial-time quantum algorithm that, given an 

𝑁 -dimensional lattice modulus 𝑀, a number 𝑟 > 2𝑞𝜂𝜀(𝑀) and poly(𝑁) samples from 𝐷𝑀,𝑟 , produces a sample 

from 𝐷
𝑀,
𝑟√𝑑∙𝜔(√log𝑛)

𝛼𝑞

 with nontrivial probability. 

 

To prove Lemma 03 we use an intermediate problem, Mod-BDD𝛿  (BDD for Bounded Distance Decoding): given a 

lattice modulus 𝑀, 𝛿 < 𝜆1(𝑀) 2⁄  and any point 𝑦 ∈ ℝ𝑛 of the form 𝑦 = 𝑥 + 𝑒 for some 𝑥 ∈ 𝑀 and ‖𝑒‖2,∞ ≤ 𝛿, 

find 𝑥. Note that the norm ℓ2,∞ is used here, because it will help us state Lemma 06 more appropriately. 

 

Another intermediate problem 𝑞-Mod-BDD𝛿  will be used: given a lattice modulus 𝑀 and a point 𝑦 ∈ ℝ𝑛 in the 

distance (by respect to the norm ℓ2,∞) 𝛿 from 𝑀, give as output the coset in 𝑀/𝑞𝑀 of the nearest vector 𝑦. The 

proof of Lemma 03 consists of the reduction sequence below (note that 𝛿 here takes the value 
𝛼𝑞∙𝜔(√log𝑛)

√2𝑛𝑟
). 

 

Echantillons à 

partir de 

𝐷
𝑀,
𝑟√𝑑∙𝜔(√log𝑛)

𝛼𝑞

 

𝐋𝐞𝐦𝐦𝐚 𝟎𝟒
→       
(quantique)

  Mod-BDD𝑀∨,𝛿 
𝐋𝐞𝐦𝐦𝐚 𝟎𝟓
→       

 
  𝑞-Mod-BDD𝑀∨,𝛿 

𝐋𝐞𝐦𝐦𝐚 𝟎𝟔
→       

 
  

M-SLWE𝑞,𝐷𝛼  

Echantillon à partir 

de 𝐷𝑀,𝑟 

 

Lemma 04: 

 

There exists an efficient quantum algorithm that, given an 𝑁-dimensional lattice modulus 𝑀, a number 𝛿 <

𝜆1(𝑀
∨)𝜔(√log 𝑛)/(2√𝑛), and an oracle that solves Mod-BDD𝛿  on 𝑀∨, yields at the output samples from 

𝐷𝑀,𝑟√𝑑∙𝜔(√log 𝑛)/(√2𝛿). 

 

Lemma 05: 

 

For any 𝑞 ≥ 2, there exists a polynomial-time reduction from Mod-BDD𝛿  to 𝑞-Mod-BDD𝛿 . 

 

Lemma 06: 

Let 𝜀(𝑁) = 𝑁−𝜔(1), 𝛼 ∈ (0,1) and 𝑞 ≥ 2. Let 𝑀 ⊆ 𝑅𝑑 be an 𝑅-module, and 𝑟 > √2𝑞 ∙ 𝜂𝜀(𝑀). Given an access to 

an oracle sampler from the distribution 𝐷𝑀,𝑟, there is a probabilistic reduction from 𝑞-Mod-BDD
𝑀∨,

𝛼𝑞∙𝜔(√log𝑛)

√2𝑛𝑟

 to M-

SLWE𝑞,Ψ≤𝛼 . 

 

The principle of the reduction is to construct from 𝑦, the input of 𝑞-Mod-BDD, and from some continuous or 

discrete Gaussian samples, the (𝑎, 𝑏) peers distributed according to 𝐴𝑞,𝑠,𝜓
(𝑀)

, where s will directly depend on the 𝑥 

vector closest to 𝑦. To produce such samples (𝑎, 𝑏) according to the desired distribution, we combine the 
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corresponding proofs for LWE and R-LWE. Then call the M-SLWE oracle to return 𝑠 and allow us to recover the 

information about 𝑥. 

 

Lemma 07: 

 

Let 𝜀 > 0 and 𝑠 = 𝛩(𝑥 mod 𝑞𝑀∨). There exists 𝜓 ∈ Ψ≤𝛼 such that the statistical distance between 𝐴𝑞,𝑠,𝜓
(𝑀)

 and the 

distribution of (𝑎, 𝑏) is at most 6𝜀. 
 

All this concludes the statement of the first part of our Theorem 05. 

 

For the second part of the theorem (existence of a reduction from M-SLWE to M-LWE), we invite our readers to 

consult the proof in our bibliography (paragraph 4.3 in [3]). 

 

 The cryptosystem CRYSTALS 2.

 

The CRYSTALS or Cryptographic Suite for Algebraic Lattices encapsulates two types of cryptosystems: Kyber, a 

KEM (Key Encapsulation Mechanism, to recall) having the specificity of being classified as IND-CCA2 secure, and 

Dilithium a EUF-CMA secure signature algorithm. Both algorithms are based on difficult problems related to lattice 

modules, and were therefore built to resist possible attacks from quantum computers. 

 

CRYSTALS, as mentioned in the introduction to this book, was submitted to the NIST Post-Quantum Cryptography 

Project. It was able to progress to stage 3 of the said standardization project. But above all, it is the only one among 

the few that have progressed to this final stage, to have both a KEM and a signature type cryptosystem. [5], [6], [8] 

 

 CRYSTALS-Kyber, the KEM type cryptosystem  2.1.

 

2.1.1. Performance Analysis 

 

In this section, we discuss the implementation aspects of Kyber and report performance results for two 

implementations: the ANSI C (ANSI for American National Standards Institute) reference implementation and an 

optimized implementation using AVX2 vector instructions. 

 

2.1.1.1. Kyber performance on Intel Haswell processors 

 

Table 01 shows the Intel Haswell performance results of the reference implementation and an optimized Kyber 

AVX2 implementation and Kyber variant 90s as well as the key and ciphertext sizes. All benchmarks were obtained 

on a core of an Intel Core i7-4770K (Haswell) processor clocked at 3492 MHz (as indicated by /proc/cpuinfo) with 

TurboBoost and hyperthreading disabled. The machine used has 32 GB RAM (for Random Access Memory) and 

runs Debian GNU/Linux (GNU from GNU's Not Unix) with version 4.19.0 of the Linux kernel. Both 

implementations were compiled with gcc version 8.3.0. All cycle counts shown are the median of the cycle counts of 

10000 executions of the respective function. The implementations are not optimized for memory usage, but in 

general, Kyber has very modest memory requirements. 

 

Table 01 : Performance of Kyber on Intel Haswell processors 

 

Kyber512 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 1632 (ou 32) gen : 122684  gen : 33856  

pk : 800  enc : 154524  enc : 45200  

ct : 768  dec : 187960 (ou ≈ 288912) dec : 34572 (ou ≈ 59088) 

Kyber512 – 90s 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 1632 (ou 32) gen : 213156  gen : 21880  
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pk : 800  enc : 249084  enc : 28592  

ct : 768  dec : 277612 (ou ≈ 405268) dec : 20980 (ou ≈ 38752) 

Kyber768 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 2400 (ou 32) gen : 199408  gen : 52732  

pk : 1184  enc : 235260  enc : 67624  

ct : 1088  dec : 274900 (ou ≈ 425492) dec : 53156 (ou ≈ 82220) 

Kyber768 – 90s 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 2400 (ou 32) gen : 389760  gen : 30460  

pk : 1184  enc : 432764  enc : 40140  

ct : 1088  dec : 473984 (ou ≈ 671864) dec : 301108 (ou ≈ 52512) 

Kyber1024 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 3168 (ou 32) gen : 307148  gen : 73544  

pk : 1568  enc : 346648  enc : 97324  

ct : 1568  dec : 396584 (ou ≈ 617848) dec : 79128 (ou ≈ 115332) 

Kyber1024 – 90s 

Sizes (in Bytes) Hashwell Cycles (ref) Hashwell Cycles (AVX2) 

sk : 3168 (ou 32) gen : 636380  gen : 43212  

pk : 1568  enc : 672644  enc : 56566  

ct : 1568  dec : 724144 (ou ≈ 1009448) dec : 44328 (ou ≈ 71180) 

 

In addition, ref refers to the C reference implementation, AVX2 to the implementation using AVX2 vector 

instructions; 𝑠𝑘 stands for secret key, 𝑝𝑘 for public key and 𝑐𝑡 for ciphertext. In parentheses are approximate values 

when including key generation in decapsulation to avoid having to store expanded secret keys. In this scenario, we 

store only the initial seed 𝑑 at the very beginning of the key generation algorithm Kyber. CPAPKE. KeyGen(). The 

approximate cycle counts for this scenario are calculated as the sum of the cycle counts for standard decapsulation 

and key generation minus the number of cycles required to generate the public seed 𝜌 matrix 𝐀. Note that this is a 

very conservative estimate; actual implementations of the approach may also save, for example, sampling the 32 

bytes of randomness. 

 

2.1.1.2. Performances de Kyber sur les processeurs ARM Cortex-M4 

 

Table 02 reports the cycle count and RAM usage of a C implementation (clean) and an optimized implementation 

(m4) of Kyber on an ARM Cortex-M4. All benchmarks are obtained using the pqm4 framework on a Discovery 

STM32F407 board. We do not report here benchmarks for the 90s version of Kyber on the Cortex-M4, as pqm4 

does not yet include a constant-time implementation of AES. 

 

Table 02: Performance of Kyber on ARM Cortex-M4 processors 

 

Kyber512 

 M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4) 

gen : 655595  6020  463068  2844  

enc : 865256  8668  561518  2484  

dec : 961648  9444  519237  2508  

Kyber768 

 M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4) 

gen : 1087897  10052  756224  3292  
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enc : 1373744  13212  915676  2980  

dec : 1491214  14308  853001  3004  

Kyber1024 

 M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4) 

gen : 1696314  15180  1213303  3804  

enc : 2057522  18844  1407769  3492  

dec : 2199958  20420  1326409  3516  

 

2.1.2. Security level estimation 

 

In this paragraph, we have mainly relied on our bibliographies [1], [10] and [11]. 

 

Table 03 lists the security levels as defined in Section 4.A.5 of the NIST call for proposals [12] for the different 

parameter sets of Kyber. Our assertions are based on the cost estimates of the most well-known attacks against the 

MLWE problem underlying Kyber, as detailed in subsection 5.1 of our bibliography [1]. More precisely, the 

classical and quantum difficulty of the kernel-SVP are listed and used to derive the security levels. 

 

All Kyber parameter sets have a certain probability of decryption failure. These failures are a security problem (see 

Section 5.5 of [1]) and thus the probabilities with which they occur must be small. But since in classical ROM the 

probability of decryption failure is information theoretic, we see no need to decrease it with the security parameter. 

In particular, the decryption failure for our level 3 and 5 parameter sets is less than 2−160, which means that if 280 

instances of Kyber were executed every second from now until our sun becomes a white dwarf, the odds are still 

strongly in favor of there never being a decryption failure. We therefore exclude these attacks from our claims about 

NIST security estimates. 

 

The impact of deterministic noise caused by Compressq on Kyber512. Each coefficient of 𝐞𝟏 (and 𝐞𝟐) in the 

Kyber. CPAPKE encryption algorithm behaves like a binomial distribution with parameter 𝜂2 = 2, with variance 

𝜂2/2 = 1. The parameter 𝑑𝑢 = 10 implies that the Compress𝑞  function maps the elements modulo 𝑞 to a set of size 

210 where the difference between all the even numbers of elements in said set is 3 or 4. This implies that the error 

added by the Compress𝑞  function for each coefficient is either uniform over{−1,0,1}, {−1,0,1,2} or {−2,−1,0,1}. It 

therefore has a variance at least as large as the uniform distribution on the set {−1,0,1}, or 2/3. This makes the total 

variance of each coefficient of 𝐞𝟏 plus the deterministic error at least 1 + 2/ 3 = 5/3. The remaining secret and 

noise terms have binomial distributions with parameter 𝜂1 = 3 for a variance of 𝜂1 2⁄ = 3 2⁄ < 5/3. Taking into 

account the errors added by Compress𝑞 , we therefore compute the Kyber512 difficulty by assuming that the 

variance of each secret/noise coefficient is 3 2⁄ . 

 

Table 03: Classical and quantum difficulty of the different parameter sets proposed for Kyber. 

 

 Kyber512 Kyber768 Kyber1024 

NIST security Level 1 3 5 

    

Core-SVP methodology, Primal attack only 

Lattice attack dim. 𝑑 1003 1424 1885 

BKZ-blocksize 𝛽 (BKZ for Block Korkine 

Zolotarev) 
403 625 877 

Core-SVP classical hardness 118 182 256 

Core-SVP quantum hardness 107 165 232 

    

Refined estimate for classical attacks using 

Lattice attack dim. 𝑑 1025 1467 1918 

BKZ-blocksize 𝛽 413 637 894 
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Sieving dimension 𝛽′ = 𝛽 − 𝑑4𝑓 375 586 829 

log2(gates) 151.5 215.1 287.3 

log2(memory in bits) 93.8 138.5 189.7 

 

MAXDEPTH impact. The best-known quantum accelerations for the sifting algorithm, which are more detailed in 

the cost analysis (refer to subsection 5.1.1 of [1]), are only slightly affected by the depth limitation of a quantum 

circuit, as it uses Grover search on small sets (compared to search the entire AES key space). For the operating 

estimates of the core-SVP difficulty to match the quantum gate cost of breaking AES at the respective security 

levels, a quantum computer would have to support a maximum depth of 70 to 80. When limiting the maximum 

depth to smaller values, or when considering classical attacks, the estimates of the kernel-SVP difficulty are smaller 

than the number of gates for attacks against AES. A recent study of the concrete cost of sieving suggests that the 

quantum accelerations of these algorithms are tenuous, regardless of the value of MAXDEPTH. 

 

 CRYSTALS-Dilithium, the signature type cryptosystem 2.2.

 

2.2.1. Security 

 

The security of our signature algorithm can be proved through ROM, based on the difficulty of two problems [2], 

[9]. The first is the standard LWE problem (on polynomial rings) which requires distinguishing (𝐀, 𝐭 ≔ 𝐀𝐬𝟏 + 𝐬𝟐) 
from (𝐀, 𝐮), where 𝐮 is uniformly random. The other problem is what has been called the SelfTargetMSIS problem, 

which is the problem of finding a vector [
𝐳
𝑐
v
] with small coefficients and a satisfying message μ : 

 

H(𝜇||[𝐀|𝒕|𝐈] ∙ [
𝐳
𝑐
v
]) = 𝑐 (01) 

 

 

 

where 𝐀 and 𝑡 are uniformly random and 𝐈 is the identity matrix. In ROM, one can obtain a (non-narrow) reduction 

using the forking lemma of the standard MSIS problem to find a 𝑧0 with small coefficients satisfying 𝐀𝑧0 = 0 at 

SelfTargetMSIS. This exact approach can be followed to prove that Dilithium is secure in ROM depending on the 

difficulty of MLWE and SIS. 

 

In QROM, where the adversary can query H in overlay, the situation is somewhat different. It has been shown in 

Dilithium that it is still based on MLWE and SelfTargetMSIS in QROM, even with a narrow reduction when the 

algorithm is deterministic. But one can no longer use the forking lemma directly (since it is a type of rewinding) to 

give a quantum reduction from MSIS to SelfTargetMSIS. There are still good reasons to believe that the 

SelfTargetMSIS problem, and thus Dilithium, is secure in QROM. First, there are no natural signature schemes built 

from Σ protocols using the Fiat-Shamir transformation that are secure in ROM but not in QROM. Furthermore, it is 

possible to set the parameters of Dilithium (while leaving the algorithm design unchanged) so that the 

SelfTargetMSIS problem becomes theoretically difficult, thus leaving this version of Dilithium secure in the 

MLWE-based QROM only. An instantiation of these parameters results [2] in an algorithm with signatures and 

public keys that are 2x and 5x larger respectively. Although we do not consider this a good compromise, the 

existence of such a system gives us additional confidence in the security of an optimised version of Dilithium. 

 

Recently, new work has narrowed the gap between security in ROM and QROM even further. This work [2] showed 

that if the underlying Σ protocol collapses and has a particular strength, then its Fiat-Shamir transformation is a 

secure signature in the QROM. The particular soundness of the Dilithium protocol is directly implied by the 

difficulty of MSIS. Moreover, the said work, again, states a probable protocol collapse Σ of Dilithium. Again in this 

work is shown that the collapse property has a reduction with respect to MLWE. The reduction is rather non-narrow, 

but it gives even more affirmation that there is nothing uncertain in the construction of Dilithium or any natural 

algorithm built via the Fiat-Shamir framework that can be proven safe in ROM. In our view, it is certain that the 

distinction between secure signatures in ROM and QROM will soon be treated in the same way as the distinction 
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between secure schemes in the standard model and ROM - there will be theoretical differences, but the security in 

practice will be the same. 

 

In Table 04, the formulas for the public key and signature sizes are in our bibliography [2]. The numbers in 

parentheses for the SIS difficulty correspond to the strongly unforgeable (i.e., it is difficult to find a second distinct 

signature for a previously seen message/signature pair) version of the signature scheme. For the length of the 

coefficient corresponding to the parenthesis-free version, we always refer our readers to our bibliography [2] for 

more details. Due to the rejection sampling, there is a noticeable difference between the median and average 

signature times, so we measure both. 

 

Table 04:  Output sizes, safety and performance of Dilithium. 

 

NIST Security Level 2 3 5 

Output Size 

public key size (bytes) 1312 1952 2592 

Signature size (bytes) 2420 3293 4595 

LWE Hardness (Core-SVP and refined) 

BKZ block size 𝑏 (GSA) 423 624 863 

Classical Core-SVP 123 182 252 

Quantum Core-SVP  112 165 229 

BKZ block size 𝑏 (simulation) 433 624 863 

log2  Classical Gates 159 217 285 

log2  Classical Memory 98 139 187 

SIS Hardness (Core-SVP) 

BKZ block size 𝑏 423 (417) 638 (602) 909 (868) 
Core-SVP Classique 123 (121) 186 (176) 265 (253) 
Core-SVP quantum 112 (110) 169 (159) 241 (230) 

Performance (Unoptimized Reference Code, Skylake) 

Gen median cycles 300,751 544,232 819,475 
Sign median cycles 1,081,174 1,713,783 2,383,399 
Sign average cycles 1,355,434 2,348,703 2,856,803 
Verify median cycles 327,362 522,267 871,609 

Performance (AVX2, Skylake) 

Gen median cycles 124, 031 256, 403 298, 050 
Sign median cycles 259, 172 428, 587 538, 986 
Sign average cycles 333, 013 529, 106 642, 192 
Verify median cycles 118, 412 179, 424 279, 936 

Performance (AVX2+AES, Skylake) 

Gen median cycles 70, 548 153, 856 153, 936 
Sign median cycles 194, 892 296, 201 344, 578 
Sign average cycles 251, 144 366, 470 418, 157 
Verify median cycles 72, 633 102, 396 151, 066 

 

2.2.2. Number of iterations 

 

We would now like to calculate the probability that step 21 assigns (𝐳, 𝐡) to ⊥. The probability that ‖𝐳‖∞ < 𝛾1 − 𝛽 

can be calculated by considering each coefficient separately. For each coefficient 𝜎 of 𝑐𝐬1 the corresponding 

coefficient of 𝐳 will be between −𝛾1 + 𝛽 + 1 and −𝛾1 + 𝛽 − 1 (inclusive) as long as the corresponding coefficient 

of 𝐲𝑖 is between −𝛾1 + 𝛽 + 1 − 𝜎 and −𝛾1 + 𝛽 − 1 − 𝜎. The weight of this range is 2(𝛾1 − 𝛽) − 1 and the 

coefficient of 𝐲 has 2𝛾1 − 1 possibilities. Thus the probability that any coefficient of 𝐲 is in the correct range is : 

 

(
2(γ1 − β) − 1

2γ1 − 1
)

256∙𝑙

= (1 −
𝛽

γ1 − 1 2⁄
)
𝑙𝑛

≈ 𝑒−256∙𝛽𝑙/𝛾1  (02) 
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where we use the fact that our γ1 values are larger compared to 1/2. 

 

We then tackle the calculation of the probability that we have: 

 

‖𝐫0‖∞ = ‖LowBits𝑞(𝐰 − 𝑐𝐬2, 2𝛾2)‖∞ < 𝛾2 − 𝛽 

 

If we assume (heuristically) that the lower order bits are uniformly distributed modulo 2𝛾2, then there are: 

 

(
2(γ1 − β) − 1

2γ1 − 1
)

256∙𝑘

≈ 𝑒−256∙𝛽𝑘/𝛾2  

 

probability that all coefficients are in the correct range (using the fact that our 𝛽 values are large compared to 1/2). 

Therefore, the probability that step 21 will succeed is: 

 

≈ 𝑒−256∙𝛽(𝑙 𝛾1⁄ +𝑘 𝛾2⁄ ) (03) 

 

Table 05: Parameter of Dilithium. 

 

NIST Security Level 2 3 5 

Parameters 

𝑞 [modulus] 8380417 8380417 8380417 

𝑑 [dropped bits from 𝐭] 13 13 13 

𝜏 [# of 1’s in 𝑐] 39 49 60 

challenge entropy [log (
256
𝜏
) + 𝜏] 192 225 257 

𝛾1 [𝐲 coefficient range]  217 219 219 
𝛾1 [low-order rounding range] (𝑞 − 1)/88 (𝑞 − 1)/32 (𝑞 − 1)/32 

(𝑘, 𝑙) [dimensions of 𝐀] (4,4) (6,5) (8,7) 
𝜂 [secret key range] 2 4 2 

𝛽 [𝜏 ∙ 𝜂] 78 196 120 

𝜔 [max. # of 1’s in the hint 𝐡] 80 55 75 

Répétitions (from the equation (08)) 4.25 5.1 3.85 

 

It is more difficult to formally calculate the probability that step 24 will result in a restart. The parameters were set 

so that heuristically (𝐳, 𝐡) = ⊥ with a probability between 1% and 2%. Therefore, the vast majority of loop 

repetitions will be caused by step 21. 

 

We would like to emphasize that the expected number of iterations is independent of the secret key 𝐬1, 𝐬2 and thus 

no information about them can be obtained by an attack that counts the iterations. 

 

 Conclusions 3.

 
This paper has allowed us to focus on the mathematic object that is the MLWE (Module Learning With Error) and 

its application as basis of the CRYSTALS-Kyber and Dilithium cryptosystems. 

 

We have opened our writing on the development of the MLWE. 

 

The section has put in exergue that there is a reduction (an equivalence in terms of difficulty or hardness then) from 

the Mod-GIVP (Generalized Independent Vector Problem over Module Lattices) and the M-LWE. To be more 

precise, the reduction was detailed for the reduction from Mod-GIVP to M-SLWE (Search version of the LWE over 

Module Lattices). The reader was then sent to our reference [3] for the second part of the reduction, which is M-

SLWE to M-LWE. 
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We did then focus mainly on the cryptosystem CRYSTALS. 

 

We started with the KEM (Key Encapsulation Mechanism) type one, the CRYSTALS-Kyber. 

 

We advanced the specification of the two parts that compose it: Kyber.CPAPKE and Kyber.CCAKEM. Each of 

these two parts in their turn is subdivided into 03 algorithms: key generation, encryption, and decryption. Let us 

note in passing the fact that the operations of multiplication in the said algorithms, are carried out in the domain 

NTT (Number Theoretic Transform). The multiplication in 𝑅𝑞 is performed in an efficient way (at a lower cost). 

 

In terms of performance, it is at its peak for CRYSTALS-Kyber when it is written taking into account the 

advantages of processors supporting AVX2 technology for Intel Hashwell processors, and m4 technology for ARM 

processors. 

 

Then came the case of CRYSTALS-Dilithium which falls in the category of signature cryptosystem. 

 

In addition to the notion of NTT, which is still relevant, hash operations are also involved in a more marked way. 

We will list among others the ball hash which is represented in algorithmic terms in the function SampleInBall(𝜌). 
𝜌 representing a seed. 

 

Finally, the actual algorithm of CRYSTALS-Dilithium is given. It consists of 03 subparts: key generation, signature 

and verification. 
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