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ABSTRACT: 

In this study, an artificial neural network (ANN) model is developed based on the inductance current ripple, 

switching frequency, and load changes to estimate the output current ripple of a power factor correction (PFC) 

AC/DC interleaved boost converter (IBC) used in battery chargers of electrical vehicles (EVs). Additionally, the 

enhanced ANN model is contrasted with a few other machines learning (ML) methods, such as random forest 

(RF) and linear regression (LR). To estimate the output current ripple, the PSIM simulation programme is used to 

simulate the PFC-IBC. Consequently, 336 output current ripple values are calculated using various switching 

frequencies, load variations, and inductance current ripple. Next, to manage the current harmonics obtained from 

the grid and ensure dependable battery charging, the output current ripple value is approximated by training the 

input parameters using LR, RF, and ANN machine learning methods (MLTs). It may be observed that the 

estimation value produced by MLTs is rather consistent with the real value that the simulation produced. 

Furthermore, the simulation-based study requires several days to yield the estimation findings; in contrast, the 

estimating process using machine learning techniques can be finished in a matter of minutes. This makes the 

benefit of MLTs very evident. As a result, this value is highly accurately approximated using MLTs prior to the 

design of the charging apparatus to keep the output current ripple at a safe level, which is crucial for the charging 

of batteries in electrical vehicles. Additionally, LR, RF, and created ANN approaches were used in this estimating 

process are looked at and contrasted independently in the WEKA programme, and it is found that the created ANN 

model offers superior outcomes than alternative methods. 

Index Terms: artificial neural network, machine learning, electrical vehicle, power factor adjustment, battery 

charging. 

 

I. INTRODUCTION 

    Compared to the vehicles that are commonly used now, internal combustion engines have a more recent history 

than electrical vehicles (EVs). Because of their poor performance and lengthy charging times, these cars are not 

being closely researched and are unable to demonstrate advancements during that time [1]. But as alternative 

energy sources have grown in popularity and laws have been passed to reduce the number of hazardous gases 
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emitted, interest in EVs has soared once more as fossil fuels have been steadily running out pollution of the 

environment and atmosphere caused by internal combustion engines. 

   Electrical vehicle (EV) technology has been evolving in three distinct directions: fuel cell EVs, hybrid EVs, and 

all-EVs. The batteries that are utilised in car systems and provide chemical energy storage are what unite these 

three technological advances. Electrical cars must include fast charging capabilities and a long lifespan in addition 

to high power and energy density for the batteries utilised [2], [3]. One crucial component of electrical vehicles is 

the battery system. The battery capacity of electrical cars directly affects how far they can travel. Consequently, 

the requirement for batteries with higher  

 

FIGURE 1. The inner structure of a typical switched charger. 

The energy capacity is rising steadily. These developments enable the creation of chargers appropriate for the 

required infrastructure. These days, the charging gadgets usually Ferro-resonant chargers, thyristor chargers, and 

switching chargers are used on electrical cars. The needs of the application and the battery requirements determine 

which charging device technology is best. Thyristor and ferro-resonant chargers have a long lifespan and are 

dependable and robust. However, due to its features such being extremely efficient, lightweight, quiet, low 

loudness, and quick to react to changes, switched chargers perform better than ferro-resonant and thyristor 

chargers [3]. The battery charge module, also known as the switched battery charger, is an AC-DC/DC-DC 

converter with a fully controlled semiconductor power source flip. Due to the ability to manage the MOSFET and 

IGBT turning on and off, these converters may function at very high frequencies, which results in very low 

response times for these devices [4]–[6]. 

   A typical switched charger's structure is depicted in Figure 1. The input of the switching charger has an AC filter. 

The interleaved boost is used to obtain the DC bus voltage. Bridge diodes to correct the AC filter output, resulting 

in an intermediate-band converter (IBC) at the rectifier's output. An isolated DC-DC converter is used to regulate 

the DC bus voltage before it is delivered to the output. By modifying and filtering the DC voltage received in the 

output, the battery is charged. Every step of this procedure results in the generation of the harmonic components. 

   To ensure the safe charging of electrical car batteries and their extended lifespan, charger output current ripple 

must be kept at a specific level. When battery chargers have large output current ripples, it causes the batteries 

overheating and having a shorter lifespan. In actuality, the EV battery would not be fully charged since the battery 

management system would reduce the charge in the event of overheating. As a result, the vehicle's path will also 

limit the distance. For these reasons, it is critical to precisely predict the output current ripple value derived from 

the DC-DC converter output prior to designing and controlling the Machine learning (ML) techniques can now 

be applied. This is since ML approaches can provide far more useful, quick, and precise solutions in challenging 

mathematical operations or applications that are challenging to quantify and test. Numerous machine learning 

(ML) techniques, such as random forest (RF), artificial neural networks (ANN), and linear regression (RL), are 

available in the literature for use in estimate [8]– [10]. One of the most popular and highly accurate ways is the 

artificial neural network (ANN) technique [11]– [13]. 

TABLE 1. List of abbreviations. 
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    An inverter's issue is diagnosed in the research [14] by providing input fault information using machine learning 

techniques. The study of the IGBT power element's useful life can be found in [15]. The RF approach is used in 

the study [16] to model a DC-DC converter. As a result, it is observed that the machine learning-based models can 

offer responses to the simulation findings that are extremely similar. Using the decision tree method, the study 

[17] estimates the solar panel power needed to connect to the grid. The performance of a soft switched single-

phase inverter is investigated in the study [18] because of its ANN control. According to the study [19], the 

execution of an asymmetric half bridge DC–DC converter with ANN is investigated. 

   This paper proposes an artificial neural network (ANN) model to estimate the output current ripple of a power 

factor correction (PFC) - IBC used in electrical car battery chargers, based on variations in frequency, load, and 

inductance current ripple. The charger's PFC-IBC is a simulation within the PSIM application. As a result of the 

simulation, 336 data are collected; 315 of these are used to train the network, and 21 of these are used to evaluate 

the proposed ANN model. It is feasible to reach the estimation results in a lot less time and the findings of the 

ANN estimation are fairly like those of the simulation. With the created ANN model, this makes it very easy for 

designers of electrical car battery devices and allows for the provision of an ideal charger design while conserving 

time. Additionally, using the LR and RF ML techniques in the WEKA programme, all the steps to validate the 

supplied ANN model are repeated, and the outcomes of these techniques are acquired. A table is used to compare 

the outcomes of these three machines learning techniques, highlighting the superiority of the suggested artificial 

neural network model. 

II. POWER FACTOR CORRECTION INTERLEAVED AC/DC BOOST CONVERTER 

Voltage deformations and current harmonic distortion on electrical systems are significantly increased by the 

spread of charges, which includes non-linear components like inverters and battery chargers’ systems for 

distributing electricity. Numerous issues, such as excessive neutral currents and power system transformer 

overheating, may result from these harmonics. AC/DC power converters are utilised in battery charging to reduce 

these harmonics that are detrimental to the grid and raise the power factor. These converters are favoured as buck, 

boost, and buck-boost converters. The utilisation of a buck converter in the study suggested in [20] has also been 

lessened by using greater duty-cycle % variable width PWM signals. In the study suggested in [21], the PFC 

controller manages the converter's supply current and battery voltage to attain unity power factor. Boost converters 

are also frequently utilised in addition to these [22], [23]. Depending on the charge, both passive and aggressive 

approaches are employed and the kind of power factor correction application. Each approach has benefits and 

drawbacks. To rectify the input current in passive methods, coils and condensers are connected to the rectifier 

input or output. Despite its straightforward design, this system's usage of grid frequency inductances and 

capacitances makes it rather unwieldy. Furthermore, this device has a very poor power factor and extremely large 

non-controlled output voltage ripples [24]. In the active approach that has been thoroughly researched recently, it 

is attempted to attach a boost DC-DC converter of some kind to the rectifier output to control the output voltage 

and converge the current towards a sinusoidal shape. The output voltage can also be regulated using a separate 

circuit [25]. 

   In high power applications, IBC acquired by parallelizing traditional boost converters has been the standard in 

recent years. In Figure 2's traditional boost converter circuit, the voltage provided to the input is rectified through. 

By boosting, the rectified voltage and the diode bridge are transmitted to the output. These converters, which are 

often employed, particularly in PFC applications, are typically run in continuous current mode. 

   An IBC circuit can be shown in Figure 3 as the converter. In high power applications it is recommended to use 

an interleaved structure, or parallel operation, of lesser power boost converters to achieve the same power as a 

single booster converter to employ smaller circuit elements and lessen the high current load on the circuit elements 

[26]. 
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FIGURE 2. The classical boost converter circuit. 

 

FIGURE 3. The interleaved boost converter circuit. 

    In comparison to classical boost converters, improved performance can be obtained in operated studies with 

IBC. This is due to IBC's several benefits, including reduced input. In comparison to conventional boost converters 

operating at the same power levels, these boost converters feature reduced input filter size, fast transmission 

responsiveness, ripple free current and output voltage, and little current stress on semiconductor devices [27]– 

[29]. 

   Input inductance current wave patterns based on having a duty cycle (D) greater or lower than 50% are displayed 

in Figure 4. One of the main justifications for this study's use of IBC is because of the input current ripple being 

less than that of a traditional boost converter. As a result, there is less overall harmonic distortion (THD) during 

battery charging and less current harmonics taken from the grid. The input current ripple is produced by the 

average of the L1 and L2 inductance currents, as shown in Figure 4. The formulas relating the input and  

 

FIGURE 4. Control signals of the switches and the waveforms of boost inductor currents in (a) D > 50% mode, 

(b) D < 50% mode. 

The following output voltages can be supplied for each switch in the converter to indicate whether a switch is 

turned on or off: 

 (1) 

 (2) 

   Thus, using equations (1) and (2), the input and output voltage ratio can be obtained as follows: 

   (3) 

III. MACHINE LEARNING (ML) TECHNIQUES-BASED ESTIMATION 

The capacity of machines to extract data without explicit programming is known as machine learning. It is a subset 

or application of artificial intelligence that makes learning possible. Producing a goal-oriented forecast or 

conclusion in artificial intelligence. Machine learning techniques are used to make. The literature has a wealth of 

machine learning techniques, some of which include logistic regression, linear regression, simple bayes, k closest 
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neighbour, random forest, artificial neural network, and decision trees, among others, which are support vector 

machines. 

   The machine learning techniques LR, RF, and ANN are applied in this work. The effectiveness of the artificial 

neural network model created for output current ripple estimate. The LR and RF approaches are contrasted with 

PFC-IBC, which is utilised in electrical car battery chargers. 

A. LINEAR REGRESSION (LR) 

   An algorithm that is widely used in machine learning and statistics is called linear regression. A desired 

predictive value is modelled by linear regression using independent variables. The main purpose of it is to 

determine how variables and predictions relate to one another [9]. Regression models vary in how they depict the 

connection between the independent and dependent variables factors, as well as the quantity of independent 

variables employed [30]. 

   The general equation for linear regression is 

  (4) 

   M is the slope, and c is the y-intercept. 

The line that fits the body the best is 

 (5) 

This equation is commonly represented in statistics as 

  (6) 

  The equation is if (x1, x2, xn) are the n number of predictors. 

 (7) 

B. RANDOM FOREST (RF) 

Like other classification techniques, Random Forest is applied as a supervised machine learning technique for 

regression and classification. The name implies that it generates a random woodland. Usually, the produced forest 

consists of a group of decision trees that have been trained using the "bagging" technique. The bagging method 

aims to improve the overall output by combining many learning models [30]. 

    Overfitting, excessive noise, and outlier issues are not present with RF techniques. In addition, it operates more 

quickly and produces more accurate results than decision trees and the AdaBoost approach than techniques for 

boosting and bagging [31]. Due to its many features, including its capacity for multiple regressions and 

classifications, its speed in the training and testing phases, its ability to handle large data sets, its weighting for 

various classes, and its visualisation capabilities, the RF technique is a favoured approach [32]. 

C. ARTIFICAL NEURAL NETWORK (ANN) 

An artificial neural network (ANN) is a type of information processing system that has some performance 

characteristics with biological neural networks and was inspired by them [33]. ANNs, which only mimic the way 

humans. The brain functions, is capable of generalisation, learning from data, handling an infinite number of 

variables, etc. It has a lot of significant features.is a potent and versatile data mining technique that may be used 

to solve difficulties with estimate, classification, and grouping. 

   The processing element, often known as an artificial neuron, is the smallest unit of an ANN. The five primary 

parts of the most basic artificial neuron are inputs, weights, coupling function, output, and function of activation. 

The information that enters the cell from other cells or the outside world is called an input (x1, x2, xn). The 

examples that the network is asked to learn decide them. The values known as weights (w1, w2, wn) represent 

how one processing element in the input set or a preceding layer has affected this processing element. Every input 

is combined using the sum function and then multiplied by the weight that links it to the processing component. 

The following is the sum function. 

     (8) 
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    The value obtained from the sum function is passed to calculate the processing element's output. 

 

FIGURE 5. The knowledge flow of the used techniques in WEKA. 

via a transfer function that is differentiable, either linear or nonlinear. 

  (9) 

    This study makes use of an artificial neural network called a multi-layer perceptron (MLP). With one or more 

layers positioned between the input and output layers, an MLP is a forward-looking neural network. Data travels 

from the input layer to the output layer in a (forward) direction when it is feedforward. An approach called back 

propagation learning is used to train this kind of network. MLPs are frequently used for approximation, 

recognition, prediction, and classification of patterns. Non-linearly separated problems can be solved via MLP. 

An MLP is a forward-looking neural network with one or more layers situated in between the layers of input and 

output. Feedforward refers to the movement of data from the input layer to the output layer in a forward direction. 

Back propagation learning is the algorithm used to train this kind of network. MLPs are frequently used for 

approximation, recognition, prediction, and classification of patterns. Non-linearly separated problems can be 

resolved via MLP. 

   Multilayer neural networks are utilised to solve complicated prediction issues. Because several actions in the 

hidden layer's structure in these networks have the potential to spontaneously transform into a non-linear 

composition [34]. 

   The WEKA Explorer module is used in this work to build the three supervised machine learning techniques—

LR, RF, and ANN. These methods are models of classification. Ten-fold cross-validation testing is done under the 

Classify tab of the WEKA Explorer, with a batch size of 100 for all the trials for optimisation. Figure 5 shows the 

knowledge flow of the employed techniques. 

    The study's LR, RF, and created ANN model findings are shown according to correlation coefficient (R2), mean 

square error (MSE), and root mean square error (RMSE), mean absolute scaled error (MASE), mean absolute 

percentage error (MAPE), and mean absolute error (MAE) measures. The mean square error (MSE) is the result 

of squaring the difference between the observed and estimated data values in a series and adding the result to the 

total number of data points. It is a parameter that quadratically indicates the error between the output produced by 

the prediction model and the desired value. Given that this value was almost zero, it was clear that the predicted 

value firmly converged to the line. A machine learning model's magnitude of error is measured using the quadratic 

metric known as root mean square error (RMSE), which is frequently employed to calculate the difference 

between the predictor's predicted values and the actual values. The standard deviation of the RMSE is estimate 

mistakes. If the RMSE number is zero, then the model is error-free. 

    R2 shows how much of the variation in the dependent variable can be accounted for by the independent variable. 

 

FIGURE 6. Simulation circuit schema and control block of the PFC-IBC converter. 
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Equation 0 ≤ R indicates the determination coefficient range, which is equal to the square of the correlation 

coefficient. 2 ≤ 1. Given that this value is near to 1, it suggests that the independent variable in the model is largely 

explained by the variance in the dependent variable. 

   The forecasting model's errors are measured using the MAE, or absolute mean error. It displays the degree to 

which the estimated and actual values are similar. MAPE refers to the representation of the average absolute error 

values expressed as a percentage of the real values. The term "high accuracy" refers to estimation models with a 

MAPE value of less than 10%, whereas the term "accurate estimation" refers to models with a value between 10% 

and 20%. MASE is calculated by dividing the mean absolute error of the in-sample one-step naive forecast by the 

mean absolute error of the forecast values. It serves as a gauge for forecast accuracy. When compared to alternative 

techniques for calculating forecast errors, the mean absolute scale error offers advantageous characteristics, 

including root mean square deviation, and is thus advised for assessing the relative forecast accuracy [35]. 

   The following equations, in that order, offer the metrics that were employed in this study's evaluation of the 

estimation findings. The parameters O and P in the equations stand for the observed and expected, respectively. 

 (10) 

 (11) 

(12) 

  (13) 

 (14) 

 (15) 

IV. RESULTS AND DISCUSSION 

The PFC-IBC converter utilised in the study is shown by its simulation circuit design in Figure 6, the data for 

which were taken from the PSIM 9.1.1 programme. The reference measurements made with PI controllers from 

the input and output are incorporated into the control block to get the control signals for the PFC from the 

semiconductor power switches in the IBC. The ANN model that was created uses the data from the simulation 

research that were divided into training and testing sets. The converter's PFC operation is additionally confirmed 

empirically by setting up an experimental converter circuit prototype. Figure 7 shows a snapshot of the converter's 

experimental circuit prototype. 

   The PFC-IBC modelling and experimental findings are displayed in Figure 8. The findings of the simulation 

and the experimental results are displayed in the figure studies complement one another. The power factor is 0.998, 

and the waveforms of the input voltage and current are roughly in phase. As a result, the PFC procedure is 

effective. 

When the input parameters are switching frequency (fp), load resistance (RL), and boost inductance current 

ripple (1IL), the value of output current ripple (1Io) is estimated as the output parameter in this study using a 

variety of machine learning approaches. Table 2 displays every parameter for both input and output values in the 
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converter that comprised the methods employed in the simulated study. The switching frequency (fp) in this 

instance is 

 

FIGURE 7. The Simulation Implementation of PFC-IBC converter. 

 

 

FIGURE 8. The input voltage and current waveforms obtained from a) simulation results 

TABLE 2. The parameters of circuit. 

 

raised in twos between 10 and 40 kHz, and in the data, set used for this investigation, the load resistance (RL) 

increases in twos between 160 and 200 Ü. As a result, 336 data are derived from simulation overall operation. 

 

FIGURE 9. ANN model structure for output current ripple. 

   The ANN model created for the estimation of output current ripple is depicted in Figure 9. As can be observed 

from the picture, the optimal model developed for the study consisted of a single neural output layer, a five-neural 

secret layer, and a three-neural input layer.  

   The actual measurement results and the estimation results coincide in all three ML approaches, as illustrated in 

Figure, and as a result, it is noticed that the estimation results closely match the genuine results. 

V. CONCLUSION 
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In this work, an artificial neural network (ANN) model is created to estimate, based on the inductance current 

ripple, switching, the output current ripple of a PFC AC/DC interleaved boost converter used in battery chargers 

for electrical vehicles. Variations in load and frequency. Additionally, the refined ANN model is contrasted with 

several machine learning methods, such as random forest and linear regression. Using the PSIM 9.1.1 programme 

to simulate the converter, the dataset utilised for estimation is obtained. This study uses LR, RF MLTs, and an 

ANN model that was created for safe battery charging in addition to correcting the power factor and separately 

estimating the output current ripple. The R2, MSE, and other metrics are used to compare the MLTs estimation 

results. Performance criteria: RMSE, MAE, MASE, and MAPE. The generated ANN model is found to be more 

effective than the LR and RF methods. The values of R2, MSE, RMSE, MAE, MASE, and MAPE in the ANN 

model are computed as follows: 0.995, 0.0006, 0.0245, 0.0002, 0.0714, and 0.2216, in that order. Consequently, 

the constructed ANN model yields an extremely accurate estimation. To provide dependable charging and a longer 

battery life for electric vehicle batteries, the output current variation may be predicted thanks to this estimation, 

which is generated considerably faster than the simulation. This saves charger designers time and convenience. 
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