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 ABSTRACT  

   In this article concept of congruence and its properties are illustrated. The notion of congruence 

introduced by gauss 200 years ago continues to have a deep impact on modern mathematics and modern life.Iin fact, 

Gauss’s study of congruence is often regarded as the beginning of modern algebra, [1]  
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1. Introduction 
 

  As we mentioned in above, congruence is an important part of number theory which was inbreed by gauss, 

here in section 2 we will discuss about definition and solving problems of congruence and we will prove and illustrate 

its properties.  

 It is important that in some situation we care only about the remainder of an integer when it is divided by 

some specified positive integer. For instance, when we ask what time it will be (on a 24 −hour clock) 50 hours from 

now, we care only about the remainder when 50 plus the current hour is divided by 24. Because we are interested 

only in remainders, we have special notation for them.  

 We have a notation to indicate that two integers have the same remainder when they are divided by the 

positive integer 𝑚, [3]  

 
2. Notion and Definition of Congruence 
2.1 notion: 

          It has probably struck you that the notation used till now has not been very good. Take the role of the ′ = ′ 

symbol, to which we have given a new meaning; e.g., we write 3 + 9 = 2 in the division by10 system, whereas 3 +
9 = 12 in normal arithmetic. Since ′ = ′ already has a definite meaning in arithmetic and algebra, this is misuse of 

the symbol. So, from this point onward, we use the symbol ‘≡’ ; we write 6 + 7 ≡ 3, 5 + 7 ≡ 2, and so on. This 

symbol is read aloud as “is congruence to”, just as ‘=’ is read aloud as “is equal to”. The symbol ‘≡’ does have other 

meaning in mathematics but generally there is no confusion as to which meaning is being used. Historically, the 

symbol was introduced by Carl Gauss for precisely this purpose.  

 

 There is an additional source of confusing. consider this: when the divisor is 5 , we have 4 + 3 ≡ 2; 

whereas when the divisor is 7 we have 4 + 3 ≡ 0. (we already replaced ‘=’ by ‘≡’.) So we have 4 + 3 ≡ 2 in one 

system, and 4 + 3 ≡ 0 in the other.  

 

 Now this will look absurd-unless we have a convenient way of showing the divisor we have in mind in 

writing such relations. Clearly, it must be shown, or there will be confusion. We shall adopt the convention of adding 

this information within brackets after ‘≡’ symbol. One way of doing this is:  

 7 + 4 ≡ 1(𝑑𝑖𝑣𝑖𝑠𝑜𝑟10). . . . . . . . . . . . . . . . . . . . . . . (2.1.1) 

 

 7 + 4 ≡ 5(𝑑𝑖𝑣𝑖𝑠𝑜𝑟6). . . . . . . . . . . . . . . . . . . . . . . . . (2.1.2) 

, and so on  

 

 We shall, however, use another word, again due to Guass. Instead ‘divisor’, we write ‘modulo’ (usually 

shortened to ‘mod’). The word ‘modulo’ comes from the Latin word modulus, which means the measure of. Here we 

“measure off”multiples of the divisor and check what remains in the end. Thus, we write  
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 7 + 4 ≡ 1(𝑑𝑖𝑣𝑖𝑠𝑜𝑟10). . . . . . . . . . . . . . . . . . . . (2.1.3) 

 

 7 + 4 ≡ 5(𝑑𝑖𝑣𝑖𝑠𝑜𝑟6). . . . . . . . . . . . . . . . . . . . . . . (2.1.4) 

 

 7 × 4 ≡ 3(𝑚𝑜𝑑5). . . . . . . . . . . . . . . . . . . . . . . . . . (2.1.5) 

and so on.  

 We now give a precise definition on the ‘≡’ symbol, [8]  

2.2  definition 

 Given integer 𝑎, 𝑏, 𝑚 with 𝑚 ≥ 0. We say that 𝑎 is congruence to 𝑏 modulo 𝑚, and we write  

 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑚). . . . . . . . . . . . . . . . . . . . . (2.2.1) 

if 𝑚 divides the difference 𝑎 − 𝑏. The number 𝑚 is called the modulus of the congruence. In other words, the 

congruence (1) is equivalent to the divisibility relation 

 𝑚|(𝑎 − 𝑏). . . . . . . . . . . . . . . . . . . . . . (2.2.2) 

In particular, 𝑎 ≡ 0(𝑚𝑜𝑑𝑚) if, and only if, 𝑚|𝑎. Hence 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑚) if, and only if, 𝑎 − 𝑏 ≡ 0(𝑚𝑜𝑑𝑚). If 𝑚 ∤

(𝑎 − 𝑏) we write 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑚) and say 𝑎 and 𝑏 are incongruence mode 𝑚, [5]. 

2.2.1 For example 

1. 83 ≡ 13(𝑚𝑜𝑑5), since 83 − 13 = 70 is divisible by 5. Hence 13 is the residue of 83(𝑚𝑜𝑑5) and 5 

is the modulus of the congruent.  

2. 3 ≡ −5(𝑚𝑜𝑑4), since 3 − (−5) = 8 is divisible by 4. Hence −5 is the residue of 3(𝑚𝑜𝑑4) and 4 is 

the modulus of the congruent. 

3. 25 ≡ 3(𝑚𝑜𝑑5), since 25 − 3 = 22 is not divisible by 5. Hence 25and 3 are incongruent modulo 5. 

note: It is often useful to reformulate the congruence relation as follows 

 𝑎 ≡ (𝑚𝑜𝑑𝑚) ↔ 𝑎 − 𝑏 = 𝑚𝑘 for some integer 𝑘. 

            ↔ 𝑎 = 𝑏 + 𝑚𝑘 for some integer 𝑘, [10].  

 It is to be note that any two integer are congruence modulo 1, whereas two integers are congruence modulo 

2 they are both even or both odd. Inasmuch as congruence modulo 1 is not particularly interesting, the usual practice 

is to assume that 𝑛 > 1.  

 Given an integer 𝑎, let 𝑞 and 𝑟 be its quotient and remainder upon divisible by 𝑛, so that,  

 𝑎 = 𝑞𝑛 + 𝑟, 0 ≤ 𝑟 < 𝑛. . . . . . . . . . . . . . . . . . . . . . (2.2.3) 

Then, by definition of congruence, 𝑎 ≡ 𝑟(𝑚𝑜𝑑𝑛). Because there are 𝑛 choices for 𝑟, we see that every integer is 

congruent modulo 𝑛 to exactly one if the values 0, 1, 2, . . . , 𝑛 − 1 is called the set of least nonnegative residues 

modulo 𝑛.  

 In general, a collection of 𝑛 integers 𝑎1, 𝑎2, . . . , 𝑎𝑛 is said to form a complete set of residues (or a complete 

system of residues) modulo n if every integer is congruent modulo 𝑛 to 0, 1, 2, . . . , 𝑛 − 1, taken in some order. For 

instance  

 −12, −4, 11, 13, 22, 82, 91 

constitute a complete set of residues modulo 7; here, we have  

 −12 ≡ 2,   − 4 ≡ 3,   11 ≡ 4,   13 ≡ 6,   22 ≡ 1,   82 ≡ 5𝑎𝑛𝑑91 ≡ 0. . . . . . . . . . . . . . . . . . . . . . (2.2.4) 

all modulo 7. An observation of some importance is that any 𝑛 integers from a complete set of residues modulo 𝑛 if 

and only if no two of the integer are congruent modulo 𝑛. We shall need this fact later. 

  

 Our first theorem provides a useful characterization of congruence modulo 𝑛 in terms of remainders upon 

division by 𝑛, [6]. 

4.19 ≡ 5(𝑚𝑜𝑑7), similarly 2𝑘 + 1 ≡ 1(𝑚𝑜𝑑2) which means every odd number is congruence to 1 

modulo 2, [7]. 

 
3. properties of congruence 

  In the last section we illustrated the notion and definition of congruence, here we will discuss a bout some 

basic properties of congruence.  

 

3.1 properties: Congruence has the following properties 



Vol-6 Issue-4 2020  IJARIIE-ISSN(O)-2395-4396 

12346 www.ijariie.com 461 

 
property3.1.1. For arbitrary integers 𝑎 and 𝑏, 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛) if and only if 𝑎 and 𝑏 leave the same non-negative 

remainder when divided by 𝑛. 

 

proof. First take 𝑎 ≡ (𝑚𝑜𝑑 n), so that 𝑎 = 𝑏 + 𝑘𝑛 for some integer 𝑘. Upon division by 𝑛, 𝑏 leave a certain 

remainder; that is, 𝑏 = 𝑞𝑛 + 𝑟, where 0 ≤ 𝑟 < 𝑛. Therefore,  

 𝑎 = 𝑏 + 𝑘𝑛 = (𝑞𝑛 + 𝑟) + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟. . . . . . . . . . . . . . . . . . . . . (3.1.1.1) 

which indicates that 𝑎 has the same remainder as 𝑏.  

 On the other hand, suppose we can write 𝑎 = 𝑞1𝑛 + 𝑟 and 𝑏 = 𝑞2𝑛 + 𝑟, with the same remainder   𝑟(0 ≤
𝑟 < 𝑛). Then  

 𝑎 − 𝑏 = (𝑞1𝑛 + 𝑟) − (𝑞2𝑛 + 𝑟) = (𝑞1 − 𝑞2)𝑛. . . . . . . . . . . . . . . . . . . . . . . . (3.1.1.2) 

where 𝑛|𝑎 − 𝑏. In the language of congruences, we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n). 

  

Example3.1.1. Because the integers −56 and −11 can be expressed in the form  

 −56 = (−7)9 + 7, −11 = (−2)9 + 7. . . . . . . . . . . . . . . . . . (3.1.1.3) 

with the same remainder 7, Theorem 3.1.1 tells us that −56 ≡ −11(𝑚𝑜𝑑 9). G0ing in the other direction, the 

congruence −31 ≡ 11(𝑚𝑜𝑑7) implies that −31 and 11 have the same remainder when divided by 7; this is clear 

from the relations  

 −31 = (−5)7 + 4,11 = 1 ⋅ 7 + 4. . . . . . . . . . . . . . . . . . . . . . . . (3.1.1.4) 

 

 Congruence may be viewed as a generalized form of equality, in the sense that its behavior. With respect to 

addition and multiplication is reminiscent of ordinary equality. Some of the elementary properties of equality that 

carry over to congruences appear in the next property. 

 

property3.1.2. Let 𝑛 > 1 be fixed and 𝑎, 𝑏, 𝑐𝑎𝑛𝑑𝑑 be arbitrary integers, then the following properties hold: 

(a) 𝑎 ≡ 𝑎(𝑚𝑜𝑑 n) 

(b) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n), then 𝑏 ≡ 𝑎(𝑚𝑜𝑑 a). 

(c) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n) and 𝑏 ≡ 𝑐(𝑚𝑜𝑑 n), then 𝑎 ≡ 𝑐(𝑚𝑜𝑑 n). 

(d) if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n), then 𝑎 + 𝑏 ≡ 𝑏 + 𝑐(𝑚𝑜𝑑 n) and 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 n).  

(e) if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n), then 𝑎𝑘 ≡ 𝑏𝑘(𝑚𝑜𝑑 n) for positive integer 𝑘. 
proof.  

(a) For any integer 𝑎, we have 𝑎 − 𝑎 = 0 ⋅ 𝑛, so that 𝑎 = 𝑎(𝑚𝑜𝑑 n). 

 

(b) Now if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n), then 𝑎 − 𝑏 = 𝑘𝑛 for some integer 𝑘. . Hence, 𝑏 − 𝑎 = −(𝑘𝑛) = (−𝑘)𝑛 

and because −𝑘 is an integer, this yields property (b). 

 

(c) This property is slightly less obvious: Suppose that 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n) and also 𝑏 ≡ 𝑐(𝑚𝑜𝑑 n). Then there 

exist integer ℎ and 𝑘 satisfying 𝑎 − 𝑏 = ℎ𝑛 and 𝑏 − 𝑐 = 𝑘𝑛. It follows that  

 𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐) = ℎ𝑛 + 𝑘𝑛 = (ℎ + 𝑘)𝑛. . . . . . . . . . . . . . . . . . . . (3.1.2.1) 

which is 𝑎 ≡ (𝑚𝑜𝑑 n) is congruence notation. 

 

(d) In the same vein, if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 n) and 𝑐 ≡ 𝑐(𝑚𝑜𝑑 n), then we are assured that 𝑎 − 𝑏 = 𝑘1𝑛 and 𝑐 −
𝑐 = 𝑘2𝑛 for some choice of 𝑘1 and 𝑘2. Adding these equations, we obtain  

 (𝑎+) − (𝑏 + 𝑐) = (𝑎 − 𝑏) + (𝑐 − 𝑐) = 𝑘1𝑛 + 𝑘2𝑛 = (𝑘1 + 𝑘2)𝑛. . . . . . . . . . . . . . . . . . . . . . (3.1.2.2) 

Note that  

 𝑎𝑐 = (𝑏 + 𝑘1𝑛)(𝑐 + 𝑘2𝑛) = 𝑏𝑐 + (𝑏𝑘2 + 𝑐𝑘1 + 𝑘1𝑘2𝑛)𝑛. . . . . . . . . . . . . . . . . . . . . (3.1.2.3) 

Because 𝑏𝑘2 + 𝑐𝑘1 + 𝑘1𝑘2𝑛 is an integer, this says that 𝑎𝑐 − 𝑏𝑐 is divisible by 𝑛, whence 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 n). 

 

(e) Finally, we obtain property (e) by making an induction argument. The statement certainly holds from 𝑘 =
1, and we will assume it is true for some fixed 𝑘.From (d), we know that 𝑎 ≡ 𝑏(𝑚𝑜𝑑n) and 𝑎𝑘 ≡ 𝑏𝑘(𝑚𝑜𝑑 n) 

together imply that 𝑎𝑎𝑘 ≡ 𝑏𝑏𝑘(𝑚𝑜𝑑  n), or equivalently 𝑎𝑘+1 ≡ 𝑏𝑘+1(𝑚𝑜𝑑  n). This is the form the statement 

should take for 𝑘 + 1, and so the induction step is complete[5]. 
 

property 3.1.3. If we have two congruences with the same modulo,  

𝑎 ≡ 𝑏(𝑚𝑜𝑑 n) and  c≡ 𝑑(𝑚𝑜𝑑 m). . . . . . . . . . . . . . . . . . . . . . . . (3.1.3.1) 
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Then we can add them, subtract them, and multiply them to get 

𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 m), 𝑎 − 𝑐 ≡ 𝑏 − 𝑑(𝑚𝑜𝑑 m) and 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 m). . . . . . . . . . . . . . . . . . . (3.1.3.2)  

proof.  

         A useful special case of the multiplication rule is that we can multiply both sides of a congruence by the same 

number: if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 m), then 𝑘𝑎 ≡ 𝑘𝑏(𝑚𝑜𝑑 m) for every integer 𝑘. 

These properties need to be proved, however. By hypothesis, 𝑎 − 𝑏 and 𝑐 − 𝑑 are divisible by 𝑚. To see 

that congruences can be added, we must verify that (𝑎 + 𝑐) − 𝑏 + 𝑑) is divisible by 𝑚. To this end, we write it in the 

form (𝑎 − 𝑏) + (𝑐 − 𝑑), which shows that it is the sum of to integers divisible by 𝑚 and so it is also divisible by 𝑚. 

Th e proof that congruence can be subtracted is very similar, but multiplication is bit trickier. We have to 

show that 𝑎𝑐 − 𝑏𝑑 is divisible by 𝑚. To this end, we write it in the form  

 𝑎𝑐 − 𝑏𝑑 = (𝑎 − 𝑏)𝑐 + 𝑏(𝑐 − 𝑑). . . . . . . . . . . . . . . . . . . . . (3.1.3.3) 

Here 𝑎 − 𝑏 and 𝑐 − 𝑑 are divisible by 𝑚, and hence so are (𝑎 − 𝑏)𝑐 and 𝑏(𝑐 − 𝑑) , and hence so their sum [4].  

 

property 3.1.4. 𝑖 𝑚𝑜𝑑 n= (𝑖 + 𝑘𝑛)𝑚𝑜𝑑 n. 

 

proof.  

         By Euclidian Division Theorem, for unique integers 𝑞 and 𝑟, with 0 ≤ 𝑟 < 𝑛, we have  

 𝑖 = 𝑛𝑞 + 𝑟. . . . . . . . . . . . . . . . . . . . . (3.1.10) 

Adding 𝑘𝑛 to both sides of Equation 3.1.10, we obtain  

 𝑖 + 𝑘𝑛 = 𝑛(𝑞 + 𝑘) + 𝑟. . . . . . . . . . . . . . . . . . . . . . . . . (3.1.11) 

Applying the definition of  i 𝑚𝑜𝑑 n to Equation 3.1.10 we have that 𝑟 = 𝑖𝑚𝑜𝑑 n; applying the same definition to 

Equation 3.1.11 we have that 𝑟 = (𝑖 + 𝑘𝑛)𝑚𝑜𝑑 n, [9].  

 

3.2   linear congruence 

  A congruence of the form 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 m), where 𝑚 is a positive integer, 𝑎 and 𝑏 are integers, and 𝑥 

is a variable, is called a linear congruence. Such congruence arise throughout number theory and its applications.  

 How can we solve the linear congruence 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 m), that is, how can we find all integers 𝑥 that 

satisfy this congruence? One method that we will describe use an integer 𝑎̅ such that 𝑎̅𝑎 ≡ 1(𝑚𝑜𝑑 m), if such an 

integer exists. Such an integer 𝑎̅ is said to be an inverse of 𝑎 modulo 𝑚.  

 

theorem 3.2.1: If 𝑎  and 𝑚  are relative prime integers and 𝑚 > 1 , then an inverse of 𝑎  modulo 𝑚  exists. 

Furthermore, this inverse is unique modulo 𝑚. (that is, there is a unique positive integer 𝑎̅ less than 𝑚 that is an 

inverse of 𝑎 modulo 𝑚 and every other inverse of 𝑎 modulo 𝑚 is congruent to 𝑎̅ modulo 𝑚.) 

 

proof: since 𝑔𝑐𝑑(𝑎, 𝑚) = 1, there are integers 𝑠 and 𝑡 such that  

 𝑠𝑎 + 𝑡𝑚 = 1. . . . . . . . . . . . . . . . . … … … . . . . (3.2.1.1) 

this implies that  

 𝑠𝑎 + 𝑡𝑚 ≡ (𝑚𝑜𝑑𝑚). . . . . . . . . . . . . . . . . . . . . (3.2.1.2) 

Because 𝑡𝑚 = 0(𝑚𝑜𝑑 m), it follows that  

 𝑠𝑎 ≡ 1(𝑚𝑜𝑑𝑚). . . . . . . . . . . . . . . . . . . . . . . . . (3.2.1.3) 

consequently, 𝑠 is an inverse of 𝑎𝑚𝑜𝑑 m.  

 

 Using inspection to find an inverse of 𝑎 modulo 𝑚 is easy when 𝑚 is small. To find this inverse, we look 

for a multiple of that exceeds a multiple of 𝑚 by 1 . For example, to find an inverse of 3 mod 7, we can find 𝑗 ⋅ 3 

for 𝑗 = 1,2, . . . ,6, stopping when we find a multiple of 3 that is one more than a multiple of 7. We can speed this 

approach up if we note that 2 ⋅ 3 ≡ −1(𝑚𝑜𝑑 7). This means that (−2) ⋅ 3 ≡ 1(𝑚𝑜𝑑 7). Henc, 5 ⋅ 3 ≡ 1(𝑚𝑜𝑑 7), 

so 5 is an inverse of 3 modulo7.  

 We can design a more efficient algorithm than brute force to find an inverse of 𝑎 modulo 𝑚  when 

𝑔𝑐𝑑(𝑎, 𝑚) = 1 using the steps of the Euclidean algorithm. By reversing these steps, we can find a linear combination 

𝑠𝑎 + 𝑡𝑚 = 1 where 𝑠 and 𝑡 are integers. Reducing both sides of this equation modulo 𝑚 tells us that 𝑠 is an 

inverse of 𝑎 modulo 𝑚. We illustrate this procedure in example 3.2.1 

 

Example 3.2.1. Find an inverse of 3 modulo 7 by first finding Bezout coefficients of 3 and 7. (Note that we have 

already shown that 5 is an inverse of 3 modulo 7 by inspection.)  

solution: Because 𝑔𝑐𝑑(3,7) = 1, by the above theorem, an inverse of 3 modulo 7 exists. The Eucllidean 
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algorithm ends quickly when used to find the greatest common divisor of 3 and 7:  

 7 = 2 ⋅ 3 + 1. . . . . . . . . . . . . . . . . . . . . . (3.2.1.4) 

From this equation we see that  

 −2 ⋅ 3 + 1 ⋅ 7 = 1. . . . . . . . . . . . . . . . . . . . . (3.2.1.5) 

This shows that −2 and 1 are Bezout coefficient of 3 and 7. We see that −2 is an inverse of 3 modulo 7. Note 

that every integer congruent to −2 modulo 7 is also an inverse of 3, such as 5, 9 , 12 and so on. 

 

Example 3.2.2. Find inverse of 101 modulo 4620.  

 

solution: 

       For completeness.We present all steps used to compute a inverse of 101 modulo 4620. 

 

First, we use the euclidean algorithm to show that 𝑔𝑐𝑑(101,4620) = 1. Then we will reverse the steps to 

find Bezout coefficient 𝑎 and 𝑏 such that 101𝑎 + 4620𝑏 = 1. It will then follow that 𝑎 is an inverse of 101 

modulo 4620. The steps used by Euclidean algorithm to find 𝑔𝑐𝑑(101,4620) are  

 

{4620 = 45 ⋅ 101 + 75 

101 = 1 ⋅ 75 + 26 

75 = 2 ⋅ 26 + 23 

26 = 1 ⋅ 23 + 3 

23 = 7 ⋅ 3 + 2 

3 = 1 ⋅ 2 + 1 

2 = 2 ⋅ 1. }. . . . . . . . . . . . . . . . . . . . . . (3.2.1.6) 

 

Because the last nonzero remainder is 1, we know that 𝑔𝑐𝑑(101,4620) = 1. We can now find the Bezout coefficient 

from 101 and 4620 by working backwards through these steps, expressing 𝑔𝑐𝑑(101,4620) = 1 in terms of each 

successive pair of remainders. In each step we eliminate the remainder by expressing it as a linear combination of the 

divisor and the dividend. We obtain  

 

1 = 3 − 1 ⋅ 2 

= 3 − 1 ⋅ (23 − 7 ⋅ 3) = −1 ⋅ 23 + 8 ⋅ 3 

= −1 ⋅ 23 + 8 ⋅ (26 − 1 ⋅ 23) = 8 ⋅ 26 − 9 ⋅ 23 

= 8 ⋅ 26 − 9 ⋅ (75 − 1 ⋅ 26) = −9 ⋅ 75 + 26 ⋅ 26 

= −9 ⋅ 75 + 26 ⋅ (101 − 1 ⋅ 75) = 26 ⋅ 101 − 35 ⋅ 75 

= 26 ⋅ 101 − 35 ⋅ (4620 − 45 ⋅ 101) = −35 ⋅ 4620 + 1601 ⋅ 101. . . . . . . . . . . . . . . . (3.2.1.7) 

 

That −35 ⋅ 4620 + 1601 ⋅ 101 = 1 tell us that −35 and 1601 are Bezout coefficients of 4620 and 101, 

and 1601 is an inverse of 101 modulo 4620. 

Once we have an inverse 𝑎̅ of 𝑎 modulo 𝑚, we can solve the congruence 𝑎𝑥 ≡ (𝑚𝑜𝑑 m) by multiplying 

both sides of the linear congruence by 𝑎̅ as example bellow. 

 

 

Example 3.2.3 What are the solution of the linear congruence 3𝑥 ≡ 4(𝑚𝑜𝑑 7)? 

 

solution:  

        By example 3.2.1 we know that −2  is an inverse of 3  modulo 7 . Multiplying both sides of of the 

congruence by −2 show that −2 ⋅ 3𝑥 ≡ −2 ⋅ 4(𝑚𝑜𝑑 7).  

Because −6 ≡ 1(𝑚𝑜𝑑 7) and −8 ≡ 6(𝑚𝑜𝑑 7), it follows that if 𝑥 is a solution, then 𝑥 ≡ −8 ≡ 6(𝑚𝑜𝑑 

7)  

 We need to determine whether every 𝑥 with 𝑥 ≡ 6(𝑚𝑜𝑑 7) is a solution. Assume that 𝑥 ≡ 6(𝑚𝑜𝑑 7). 

Then it follows that  

 3𝑥 ≡ 3 ⋅ 6 = 18 ≡ 4(𝑚𝑜𝑑7). . . . . . . . . . . . . . . . . . . . . (3.2.1.8) 

which shows that all 𝑥 satisfy the congruence. We conclude that the solution to the congruence are the integers 𝑥 ≡
6(𝑚𝑜𝑑 7), namely ,6, 13, 20,...and −1, −8, −15,...[2] 
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Conclusion 
       In this article we explained the concept of notion of congruence, definition of congruence, properties of 

congruence and linear congruence which are used in many field of mathematics specially in number theory and 

algebra.  
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