
Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3087

Cost-Based Evaluation Framework for

Software Fault Classification

Dr.Raghav Mehra
1,*

, Vinod Parihar
2,*

1Professor, 2Research Scholar; Computer Science & Engineering Department,

Bhagwant University Ajmer (Rajasthan)

Abstract

Cost-based evaluation framework is necessary to assess the usability of designed fault prediction models. In this

chapter, classification of faults using logistic regression and various neural network models as classifiers is

discussed in detail. Data classification techniques help in enhancing not only the efficiency of the training

process, but also the performance of the predictive model in terms of precision. The proposed approach is

applied on a case study discussed in previous chapter viz., Apache Integration Framework version 1.6.

Keywords:

Cost-Based Evaluation Framework, Software Fault Prediction, Cost Analysis, Soft Computing

Introduction

Effectiveness of fault-prediction is premeditated by affecting a element of beforehand known data related to

faults and expecting its recital beside other part of the fault data. Several researchers have worked on building

prediction models for software fault prediction. But, it was noticed that proving the effectiveness of a fault

forecast model needs further study. Table 1 lists the proposed criteria considered by various authors in the

design of their respective cost evaluation framework.

The table emphasizes on the studies carried out by different authors to compare the techniques, and the

evaluation criterion considered in choosing an effective fault classification model.

 This paper intends to appraise in ounce of classifier models in predicting errors by using metrics as requisite

input to the prediction models, to put the results of a fault-prediction technique in proper perspective. Also an

attempt has been made to assess the in ounces of fault removal cost to know whether performing fault prediction

analysis is useful or not.

 Cost-Based Evaluation Framework:

In literature it is observed that, the work done on classifying the object- oriented classes as a faulty or not-faulty one

has been carried out by numerous authors. This can be viewed as a two class" classification problem. The objective

of this problem is to identify the dependent variable (accuracy) using various classifier models based on several

independent variables. Independent variables can be considered as some sort of metrics or combination of different

metrics.

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3088

Table 1: Cost assessment framework for fault classification

Wagner has designed the cost-based evaluation framework based on certain constraints, as mentioned below:

i. Di erent phases of testing account for varying fault removal cost.

ii. No testing phase can detect 100 % faults.

iii. It is not practically possible to perform unit testing on all modules, so a limited number of important logical paths

should be selected, and testing should be exercised to selectively ensure proper working of the software to be delivered

[4].

The fault removal costs summarized by Wagner are shown in Table 2.

Table 2: Removal costs of test techniques (in sta hour per defect)

Type Min Max Mean Median

Unit 1.5 6 3.46 2.5

System 2.82 20 8.37 6.2

Field 3.9 66.6 27.24 27

The fault identification efficiencies for different testing phases are taken from the study of Jones [1. The e ciencies of

testing phases are summarized in Table 3. Wilde et al stated that more than fifty percent of modules are usually

very small in size, hence performing unit testing on these modules is not fruitful .

Table 3: Fault identification efficiencies of different test phases

Type Min Max Median

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3089

Unit 0.1 0.5 0.25

System 0.25 0.5 0.65

The formulation of Ecost, Tcost and the NEcost of the anticipated cost based valuation framework is described in the

following subsections:

Anticipated fault removal cost (Ecost)

 The fault removal cost in system testing is computed using Equation 1.1.

Costsystem = δs ∗ Cs ∗ (FN + (1 − δu) ∗ TP) (1.1)

where, δu and δs represent fault identi cation e ciency of unit testing and fault identification effciency of

system testing respectively.

 Remaining faulty classes which were not identied in system testing will be further identi ed in eld testing. The fault

removal cost in case of eld testing (Cf) is computed using Equation 1.2.

Costfield = (1 − δs) ∗ Cf ∗ (FN + (1 − δu) ∗ TP) (1.2)

The estimated overall fault removal cost can be determined by using Equation 1.3.ie.,

Ecost = Costunit + Costsystem + Costfield

Ecost = Ci + Cu ∗ (FP + TP)+ δs ∗ Cs ∗ (FN + (1 − δu) ∗ TP)+ (1 − δs) ∗ Cf ∗ (FN + (1 − δu) ∗ TP)

(1.3)

The other notations in this cost evaluation framework are as follows:

i. Mp: percentage of classes unit tested.

ii. FP : Number of false positive, FN : Number of false negative, TP : Num- ber of true positive, TN : Number of true

negative, TC: Total number of classes, FC: Total number of faulty classes.

iii. δu: Fault identi cation e ciency of unit testing, δs: Fault identi cation e ciency of system testing.

In this experiment, the values tabulated in Table 4.2 are used in designing cost evaluation framework. δu and δs show

the fault identification efficiency of entity testing and system testing respectively. The values of δu, and δs are

collected from the survey report Software Quality in 2010" Mp shows the fraction of modules unit tested, obtained

from the paper of Wilde [12]. Median values have been chosen in this cost-based analysis.

The objective is to provide the benchmarks to approximate the overall fault removal cost. Figure 1 shows the ow chart

opted for the proposed cost-based evaluation framework for software fault classification.

The proposed framework clearly states that if a technique accounts for having high false negative and/or high false

positive rates, then it results in higher fault removal cost. When this approximated cost surpass the unit testing cost (T

cost)

 It is enhanced to analysis all the modules at unit level instead of using fault prediction technique.

 Results and Analysis:

In this segment, the association between value of metrics and the fault found in a class is determined. In this approach, the

proportional learning involves via six CK metrics as input joins and the output is the achieved fault classification rate for

AIF version 1.6.

This section highlights on the design and use of neural network as a classifier and also presents the obtained cost-based

analysis results for classification of faults obtained by applying Logistic regression, ANN, RBFN, FLANN and PNN

techniques

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3090

Figure 1: Cost-based evaluation framework for software fault classification.

Neural network as a classifier:

In the design of neural network as a classifier, the target output y
J
 determines the type of classification result of a

class as faulty or not faulty. The following conditions are taken into account to predict the accuracy of

classification which are mentioned below for several neural network approaches as classifier:

(4.16)

 This table contains a total number of 865 classes, among which 779 classes have zero bugs and the remaining 188 classes

have at least one bug.

Table 4.4: Confusion matrix

 Not-Faulty Faulty

Not-Faulty 777 0

Faulty 188 0

 ANN as a classif i er:

Table 4.5 and Table 4.6 illustrate the classification matrix for Gradient Decent and Leven berg arquardt learning

techniques of ANN.

Table 4.5: Confusion matrix for Gradient Descent

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3091

 Not-Faulty Faulty

Not-Faulty 761 16

Faulty 157 31

Gradient Descent ANN (Table 4.6) is able to classify a total of 792 (761+31) classes as not-faulty with a accuracy of

82.07%.

Table 4.6: Perplexity matrix for Lederberg Marquardt

 Not-Faulty Faulty

Not-Faulty 756 21

Faulty 171 17

In assessment with Table 4.4, LM model (Table 4.7) is competent to classify a total of 773 (756+17) classes as not-

faulty with an accuracy of 80.10%.

 RBFN as a classifier:

In Table 4.8 shows the classification matrix when Basic RBFN is used as a classif i er. After applying Basic RBFN

classi fier (Table 4.8), a total of 607 (517 + 90) classes are correctly classified as not-faulty with an accuracy of

62.9%.

Table 4.8: Confusion matrix for Basic RBFN

 Not-Faulty Faulty

Not-Faulty 517 260

Faulty 98 90

FLANN as a classif i er:

Table 4.11 shows the obtained classification matrix when FLANN technique is used as a classif i er.

Table 4.11: Confusion matrix for FLANN

 Not-Faulty Faulty

Not-Faulty 742 35

Faulty 160 28

After applying FLANN classifier (Table 4.11), a total of 770 (742+28) classes are correctly classified as not-

faulty with an accuracy of 79.79%.

PNN as a classif i er:

Table 4.12 shows the classification matrix obtained by applying PNN tech- nique as a classi er.

Table 4.12: Confusion matrix for PNN

 Not-Faulty Faulty

Not-Faulty 775 2

Faulty 181 7

In assessment with Table 4.4, it is observed that, after applying PNN as a classifier (Table 4.12), a total of 782 (775 +

7) classes are correctly classified as not-faulty with an accuracy of 81.03%.

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3092

The fault removal cost for AIF version 1.6 obtained by applying Logistic regression, ANN, RBFN, FLANN and PNN

techniques are tabulated in Table 4.13..

Table 4.13: Fault removal cost for AIF 1.6 using various classifier models

Classification model Precision TP Rate FP Rate TN Rate FN Rate Accuracy Ecost NEcost

Logistic regression 61.54 08.51 01.29 98.71 91.49 81.13 3119.4 0.8795

Gradient Descent 65.96 16.49 02.06 97.94 83.51 82.07 3109.7 0.8762

Levenberg Marquardt 44.74 09.04 02.70 97.30 90.96 80.10 3145.3 0.8868

RBFN Basic 25.71 47.87 33.46 66.54 52.13 62.90 3622.3 1.0213

RBFN Gradient 99.19 64.89 00.13 99.87 35.11 93.50 2922.0 0.8238

RBFN Hybrid 40.00 10.64 03.86 96.14 89.36 79.40 3162.8 0.8917

FLANN 44.44 14.89 04.50 95.50 85.11 79.79 3162.1 0.8915

PNN 77.78 03.72 00.26 99.74 96.28 81.03 3114.3 0.8780

Comparison of cost analysis:

Data set of AIF version 1.6 from PROMISE repository is chosen to estimate the impact of fault prediction technique.

The fault removal cost (NEcost) computed using the proposed framework is used to evaluate the models.

To illustrate efficiency of the anticipated cost-based evaluation framework, classifier models such as Logistic regression,

ANN, RBFN, FLANN and PNN are used for computing misclassification cost. The goal is to demonstrate the cost

evaluation framework and suggest whether performing fault prediction using particular prediction model is useful or

not rather than identifying the

 best" fault-prediction model.

Table 4.13 shows the various parameters related to cost evaluation frame- work along with NEcost. NEcost is the

criterion used in evaluating a classification model to show the usefulness of fault prediction. From Table 4.13, it

can be observed that:

i. The Gradient Descent approach of RBFN classifier obtained the best classification rate of 93.50% when compared

with other four models, and

ii. Gradient Descent RBFN incurs less cost involved in testing (with a NEcost ratio of 0.8238).

This indicates that performing fault prediction on the basis of classification cost involved using Hyrbid RBFN method is

very much effective in assessment with LR, GD, LM, FLANN and PNN models.

It is observed that, Normalized fault removal cost (NEcost), which is the ratio of Ecost and Tcost (Equation 4.9)

determines the fault prediction model's e ectiveness in a succinct manner.

The proposed cost-based evaluation framework provides:

1. A binary yes or no scale whether to perform fault prediction analysis or not.

2. A criterion to choose a better fault prediction model based not only on the obtained accuracy rate but also taking

NEcost into consideration.

Conclusion :

This paper comprises detailed survey on software fault prediction for classifying software modules which is

faulty or non-fault. In this paper, an attempt has been made to design a cost based evaluation framework for finding

the efficiency of the developed fault prediction model using different neural network models as classifiers. Models

such as LR, ANN, RBFN FLANN and PNN were used as classifiers..All described methods are collectively called as

computational intelligence techniques. The precision rate of fault prediction using different techniques show that

fuzzy has more useful than other methods due to save in training time. The FIS is technically better, it has power

of rule for which handle the different size of the software. It has also independent of the size of the software.

References:

[1] Ian Somerville, “Software Engineering Eight edition”, Pearson Edition India, 2012

[2] Aditya P.Mathur, Foundation of software Testing,(Pearson Education, India,2007)

[3] Sushant Kumar , Prabhat Ranjan and R.Rajesh “A Concept for Test Case Prioritization Based Upon the

Priority Information of Early Phase”, Lecture Notes in Electrical Engineering, (2016)

[4] Yogesh Singh, Ruchika Malhotra, “Object-Oriented Software Engineering”, PHI India (2012)

[5] Luciano S.de Souza, Ricardo B.C.Prudencio,Flavia de A. Barros, “Search Based constrained test case

selection using execution effort”,Expert Systems with Applications40(2018)

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

20014 ijariie.com 3093

[6] Manoj kumar, Arun Sharma,Rajeshkumar, “Towards Multi-Faceted Test Cases Optimization”, Journal of

Software Engineering and Applications,4, 550 (2019)

[7] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Enterprises Inc., 2020.

[8] F. Wu, Empirical validatin of object-oriented metrics on NASA for fault pre- diction, in Proceedings of

International Conference on Advances in Information Technology and Education. Springer, 2018.

[9] Y. Singh, A. Kaur, and R. Malhotra, Empirical validation of object-oriented metrics for predicting fault

proneness models, Software Quality Journal, vol. 18, no. 1, pp. 3 35, March 2010.

[10] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Enterprises Inc., 2011.

[11] L. N. De Castro and F. J. Von Zuben, Learning and optimization using the clonal selection principle, IEEE

Transactions on Evolutionary Computation, vol. 6, no. 3, pp. 239 251, June 2002.

[12] K. K. Aggarwal, S. Yogesh, K. Arvinder, and R. Malhotra, Empirical analysis for investigating the e ect of

object-oriented metrics on fault proneness: a replicated case study, Software Process: Improvement and

Practice, vol. 14, no. 1, pp. 39 62, August 2009.

[13] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, Empirical validation of three software

metrics suites to predict fault-proneness of object- oriented classes developed using highly iterative or agile

software development processes, IEEE Transactions on Software Engineeering, vol. 33, June 2007.

[14]]M. Cartwright and M. Sheppered, _An empirical investigation of an object ori-

[15] ented software system,_ IEEE Transactions on Software Engineeering, vol. 26,no. 8, pp. 786_796, August

2000.

[16] F. Wu, Empirical validatin of object-oriented metrics on NASA for fault pre- diction, in Proceedings of

International Conference on Advances in Information Technology and Education. Springer, 2021.

[17] G. Pai and J. Dugan, Empirical analysis of software fault content and fault proneness using bayesian

methods, IEEE Transactions on Software Engineeer- ing, , October 2007.

[18] Y. Singh, A. Kaur, and R. Malhotra, Empirical validation of object-oriented metrics for predicting fault

proneness models, Software Quality Journal, vol. 18, no. 1, pp. 3 35, March 2010.

[19] Sushant Kumar ,Prabhat Ranjan and R.Rajesh, “An Overview of Test Case Optimization using Meta-

Heuristic Approch”, Recent Advances in mathematics, Statics and Computer Science, (2015)

