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ABSTRACT 

 
The cart-double pendulum system is one of the unstable experimental systems that fully converges the 

complex properties of nonlinear control problems. It represents a class of real world systems such as two-wheeled 

mobile robots, pendubots, missile launchers and many more. The problems associated with it are always 

challenging topics in the field of control systems which  required  a  suitable  and fast  reaction  controller. This 

paper presents a  technique to control this system stabilizing at a upright position. Simulation and experimental 

results using Matlab/Simulink  toolbox  will show a better performance of the proposed controller under disturbance 

and change in mass. 
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1. INTRODUCTION  

 The cart-double pendulum system has two equilibrium points [6],  the stable point is at which the pendulum 

is pointing downwards and the unstable one is at which the pendulum is pointing upwards. The aim of designing a 

controller is to move and balance the pendulum from the stable equilibrium point to the unstable one. This is a 

challenging control problem because the system is highly unstable, nonlinear and underactuated. Different control 

agorithms are studied by many researchers, from classical PID controllers [14] to advanced controllers such as 

neural networks, [15] and optimal control using LQR controller [13], [17]. However, these  algorithms are  only   in 

simulation. 

 The goal of this article is to design controllers to swing up and balance the pendulum from a pending position 

to the vertical upward point. Swinging up the pendulum can be achieved by using feedforward control [18]. At the 

vertical position, LQR controller is used to stabilize the pendulum. A switch is used to change controllers. This 

means, when the pendulum approaches a certain area, the stabilizing controller will replaces the swinging up 

controller to balance the pendulum at the vertical upward position. 

 The paper is organized as follows. System model is provided in section II, including nonlinear dynamic 

model of the system, linearized model in state-space form and permanent magnet DC motor dynamics. Section III 

presents controller design. Then, section IV shows simulation and experimental results. Finally, Section 5 concludes 

this paper. 

 
2. SYSTEM MODELS 

 

2.1 Nonlinear Dynamical Model 

  

The double pendulum is an open-loop, unstable and highly nonlinear system. The objective of the controller is to 

balance the pendulum at its upward position by the force  F  acting  on  the  cart. Parameters of the system are 

showed in table 1 
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                                             Fig. 1: Reference frames and parameters of pendulum 

 

   Figure 1 shows the reference frames and parameters of the system. The movement of the cart is constrained in the 

x-horizontal direction, and the pendulum can rotate in the x-y plane. The system has three DOF and can be fully 

represented using three coordinates: horizontal displacement of the cart, s; and rotational displacement of pendulum, 

φ1, φ2 .  Coordinates of the Centre of Gravity (CoG) of the pendulum is given by: 

  1 1 1 1 1
sin cos 0 ,

T

C s a a = −                                     

1 1 1 1 1 11
 [ cos sin 0] ,TC s a a   = − −                              

 2 1 1 2 2 1 1 2 2
sin sin cos cos 0 ,

T

C s l a l a   = − − +  

 2 1 1 1 2 2 2 1 1 1 2 2 2
cos cos sin sin 0

T

C s l a l a       = − − − −  

CoG of the cart is given by: 

           0        0           0    ,           0
T T

cart cart
C C ss= =  

 

Table 1: Parameters of the double pendulum 

Variable Unit Meaning 

1 2
   rad  

Angular displacement of the 

pendulum links from the vertical 

upright position. 

s  m  Cart displacement. 

1 2
,J J  2.kg m  

Moment of inertia of the 

pendulum links. 

1 2
,m m  kg

  
Mass of the pendulum. 

m  kg
 

The mass of the cart 

1 2
,a a  m  The distance from the CoG of the 

pendulum to the pivot. 
g

 
2/m s  

Acceleration of gravity 

1
d  .Nm s  Friction coefficient of pendulum 

2
d  .Nm s  Friction coefficient of pendulum 

m
R    Armature resistance of motor 

m
L  H  Armature inductance of motor 

m
K

  
Wb  Emf constant 

R  m  Pully radius 

 

Applying Euler-Lagrangian equation to the system yields: 
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   
− = − 

   

d L L R
F

dt q q q
       (1) 

where L is the Lagrange function defined as the difference between kinetic and potential energies:  L = T – V. 

( ) ( )+ + =D C G(q) q ,q q q q F       (2) 

( ) ( )
1

 = − −
 

C G
D

,
(q)

q F q q q q
      (3) 

2 2

2 1 1 1 1 1 2 1 1 1 1 2 1 2 1 2

2

2 2 2 2 1 2 1 2 2 2 2

1 2 2 1 1 1 1 1 2 2 2

cos cos cos( )

( ) cos cos( )

cos cos cos

m l m a m l m a J m l a

D q m a m l a m a J

m m m m l m a m a

   

  

  

 − − + + −
 

= − − + 
 + + − − − 

 

2 1 2 1 2 2

2 1 2 1 2 1

1 1 2 1 1 1 2 2 2 2

0 0 sin( )

( , ) 0 sin( ) 0

0 ( )sin sin

m l a

C q q m l a

m a m l m a

  

  

  

− 
 

= − −
 
 + 

 

 

1 1 2 1 1

2 2 2

0

( ) ( ) sin

sin

G q m a m l g

m a g





 
 

= − +
 
 − 

 

 

2.2 Linearized Model in State-Space Form 

 

Linearizing the model, the following approximations are applied: 

1 2 1 2

1 2

2 2

1 2

1 2

1 1

2 2

sin( )

cos( ) 1

0

cos cos 1

sin

sin

   

 

 

 

 

 

− = −

− =

= =

= =

=

=

 

 Defining the state variables as below: 

1

2

1

1

2

3

4

5

62

 

x

x

x

xs

x

x

s

x









  
  
  
  

= =   
  
  
  

      

 

                                                              Table 2: List of Parameters 

 Variable    Value    Unit 

1l  0.419 m  
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2
l  0.484 m  

1m
 

0.9363 kg
 

2m
 

0.5505 kg
 

1a  0.2687 m  

2a  0.2256 m  

1
J  0.0243 2.kg m

 

2J  0.0183 2.kg m
 

m  0.2 kg
 

1d  0.0003 .Nm s  

2d  0.2 .Nm s  

.  

   Linearization of (6) around x = 0 and substituting the parameters given in Table 2 into (4), we obtain: 

1 2 3 4 5 6 1 2 3

 = +    = =    =

;        ;   
T Tx Ax Bu

x x x x x x x y x x x
y Cx

   (4) 

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 6.9425 1.6179 0 0 0

0 54.6574 6.2595 0 0 0

0 42.7910 37.6742 0 0 0

A

 
 
 
 

=  
− − 

 −
 

− 

0

0

0

1.1102

2.9248

0.30192

B

 
 
 
 

=  
 
 −
 
   

 

2.3 Permanent Magnet DC Motor Dynamics [6] 

The relation between the armature current and the armature voltage can be written in Laplace form as: 

( )= + +
emfm m m m

U E I R sL       (5) 

where 𝑅m and 𝐿m are resistance and inductance of the rotor, respectively.  

The back-emf voltage created by the motor, Eemf, is proportional to the rotor speed as: 

=
emf m

E K
 

The electromagnetic torque generated by the DC motor is proportional to the armature current:  

=
dt m m

M K I
 

We have:       ( ) ( )
11

1
= − = −

+ +

m

m emf m

m m m

R
I U E U K

R L s T s

           (6) 
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From the above equations, we get the structure diagram of DC motor with feedback current using ACS 

712 current sensor as follows:  

 

 

 

 

 

Fig -2: Closed-Loop DC motor current Control System  

The response rate of the current controller is very fast, so the change from the feedback output is very small. 

Therefore, the feedback is considered as a noise. 

  Table 3: List of Parameters. 

Parameter Value 

DC motor power ( P ) 120 W   

voltage (U) 24 VDC  

Current (I) 5A    

DC motor speed (n) 1200Rpm   

rotor inertia (
mJ ) 4 22.10 .Kg m−

  

pully radius (R) 0.195 m   

Armature inductance of motor (Lm) 0.0281 H 

Armature resistance of motor (Rm) 0.34  

 

.  In the classical sense, a PI controller has the following transfer function:  

1 1
W 1 0.32 1 660.16c p iK K

s s

   
= + = +   

   
        (7) 
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Fig 3: Diagram simulating the current controller with the reference set point to 1 

The inner loop needs a fast response. Using PI controller with the above parameters, the system has a Settling Time 

of 0.008s. Therefore, the designed PI controller meets the requirement. 

  

3. DESIGN CONTROLLERS FOR STABILIZING DOUBLE  PENDULUM 

3.1 Quadratic optimal regulator problem 

The system equation in the state space is represented as 

 = +


=

x Ax Bu

y Cx
 

We determine the matrix K of the optimal control vector u Kx= −  to minimize the performance index: 

T T

0

1
J (x Qx u Ru)dt min

2

+

= + →
                         

Where Q and R are weighting matrices. In this problem, we assume that the control vector u(t) is unconstrained. The 

linear control law given by Eq. (8) is the optimal control law. The matrix K are determined by minimizing the 

performance index J,  then u(t) = –Kx(t) is the optimal control signal for any initial state x(0). The block diagram is 

shown in Fig 4.  

 

In MATLAB, function “lqr” is used to get the corresponding feedback gain matrix K = lqr (A, B, Q, R), where Q is 

a positive semi-definite real symmetric matrix, R is a positive definite real symmetric matrix. Q and R are selected 

by experience.  

Q = diag ([200, 1, 200, 1, 200, 1]) and R = 1   

K=lqr (A, B, Q, R) 

 

Resulting in the optimal gain: 

 10 212.492 296.4106 14.3510 5.7107 49.7217K = − −
 

 
3.2 Swing-Up Control 

The model of the double pendulum (3) can be written as a system of second-order ODEs in which the 

acceleration of the cart s u=  serves as input to the system.  

( , , )

s u

u   

=

=
          (8) 

   The swing up within a finite time interval t ∈ [0, T] requires to steer the double pendulum from the initial 

downward equilibrium.  

(0) 0,   (0) 0,   (0) [ ; ] ,   (0) 0Ts s    = = = =      (9) 

to the terminal upward equilibrium 

( ) 0,   ( ) 0,   ( ) [0;0] ,   ( ) 0Ts T s T T T = = = =      (10) 

  The ODEs (8) together with the boundary conditions  (9)–(10) form a two-point boundary value problem (BVP) for 

the states s, φ  and  that depends on the input trajectory u. The feedforward control is simply the second time 

derivative of the desired output trajectory s. 

   The output trajectory s(t,p) has to satisfy the four boundary conditions (9)–(10), which implies that the output 

trajectory must be at least once differentiable. The setup function s (t, p) is constructed using the cosine series 

( ) ( )1 3 4

5

1

2

2( , ) cos( ) cos( )i

i

t i t
s pt p

nT
p pp p

T

 
−

=

= − + −= + +         (11) 

with the free parameters p = (p1, . . . , p4) 
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   The numerical solution of the BVP (8)–(11) is a standard task in numerics. A particularly convenient way is to use 

the MATLAB function bvp4c  (https://www.mathworks.com/help/matlab/ref/bvp4c.html)  designed for the solution 

of two point BVPs with unknown parameters. Bvp4c returns the trajectories 
1 2( ) [ ( ), ( )]Tt t t  =   and the 

parameter set p=(0.0494, 0.206, -0.0824, -0.1558), which yields the output trajectory  and the feedforward control 

(11) u s= . Fig.4 shows the nominal trajectories for swing-up times T =2,5s.  The maximum acceleration max 
212.5 /s m s= , acceleration max 2.2 /s m s= , acceleration max s= 0.7m in this case . In contrast to this, the swing-up 

( )  1.7 2.8 T s − time leads to a different swing-up motion and violates the respective constraint. Fig.4. Nominal 

trajectories for the swing-up of the double pendulum in case T=2.5s when the pendulum approaches a certain area, 

the stabilizing controller will replaces the swinging up controller to balance the pendulum at the vertical upward 

position. 

 
 

Fig.4. Nominal trajectories for the swing-up of the double pendulum in times T=2.5s 

 

https://www.mathworks.com/help/matlab/ref/bvp4c.html


Vol-10 Issue-3 2024                IJARIIE-ISSN(O)-2395-4396 
     

23989  ijariie.com 2443 

4. SIMULATION RESULTS AND DISCUSSION 

4.1 Simulation results 

In our research, the model of double pendulum system is pre-designed and simulated on 3D Solidworks software. 

Then, an experimental setup is built as shown in Fig. 5. The setup consists of a movable cart driven by a DC motor 

according to the control voltage. The cart can move along a horizontal track. The pendulums are mounted on the cart 

and can freely rotate around their axis. 

 

                                                                      Fig. 5: Snapshot of Real plant 

Block diagram and simulation result of the controller using swing up in combination with Quadratic optimal control 

are shown in Figure 6 and Figure 7. 
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Fig. 6: Block diagram of controllers using Quadratic Optimal Regulator (MATLAB Simulink). 

 

      Fig. 7: Simulation of Swing-Up & Stabilization using Quadratic Optimal Regulator 

Fig. 6 and Fig. 7 show that the transition time of the system using Quadratic optimal regulator is nearly 3 seconds,. 

4.2 Experimental results 
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Fig. 8: Block diagram of experimental setup 

 

Fig. 9: Experimental Swing-Up & Stabilization using Quadratic Optimal Regulator (φ1) 

  

                        Fig. 10: Experimental Swing-Up & Stabilization (φ2 ) 
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Figure 8 shows the block diagram of the experimental setup. Experimental results of the controller using swing up 

combined with Quadratic optimal control (φ1, φ2) in Figures 9, 10. It can be seen that feedforward control input 

_ _u s s dot dot= = (in Figure 6) and the stabilizing controller is able to move and balance the pendulums from their 

stable equilibrium point, x=[0, π, π,0,0,0]T, to their unstable equilibrium point, x=[0,0,0,0,0,0]T.  

5. CONCLUSIONS  

The proposed controller has achieved that the system is able not only to swing up and balance the 

pendulum from downward position to the upward equilibrium point, but also to return the cart to its original position 

on the rail. The pendulum is stable at its upward position. This proves that the control algorithm is effective. 

Simulation and experimental results are almost similar. In experimental results, however, the pendulum still 

oscillates slightly around the equilibrium position. This could be due to the dynamic uncertainty, pinion backlash, 

motor dead-zone, magnetic hysteresis, and other mechanical imperfections.  

Our future research is control design for the triple link pendulum system. 
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