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ABSTRACT 

In today's modern world, ensuring security and safety is paramount for a country's economic strength and 

attracting investors and tourists. While Closed Circuit Television (CCTV) cameras are commonly used for 

surveillance, they still rely on human supervision to detect illegal activities such as robberies. The challenge 

remains in developing a system that can automatically detect such activities, especially weapon-related threats, 

in real time despite advancements in deep learning algorithms, hardware processing speed, and camera 

technology. 

This work focuses on enhancing security using CCTV footage to detect harmful weapons by leveraging state-of-

the-art open-source deep learning algorithms. The approach involves binary classification, with pistols as the 

reference class, and introduces the concept of including relevant confusion objects to reduce false positives and 

false negatives. Due to the lack of a standard dataset for real-time scenarios, a custom dataset was created 

using weapon photos from various sources, including personal cameras, internet images, YouTube CCTV 

videos, GitHub repositories, data from the University of Granada, and the Internet Movies Firearms Database 

(IMFDB). 

Two main approaches were employed: sliding window/classification and region proposal/object detection. 

Several deep learning algorithms, including VGG16, Inception-V3, Inception-ResnetV2, SSDMobileNetV1, 

Faster-RCNN Inception-ResnetV2 (FRIRv2), YOLOv3, and YOLOv4, were tested based on precision and recall, 

which are more crucial metrics than accuracy for object detection tasks. 

Among these algorithms, YOLOv4 demonstrated superior performance, achieving an F1-score of 91% and a 

mean average precision of 91.73%, surpassing previous benchmarks. This highlights its effectiveness in 

accurately detecting harmful weapons in CCTV footage, contributing significantly to enhancing security 

measures. 

 

 

I. INTRODUCTION 

The global increase in crime rates, particularly involving handheld weapons during violent activities, poses a 

significant challenge to ensuring public safety and security. To foster economic growth, countries must maintain 

law and order, providing a peaceful environment for investment and tourism. However, the prevalence of 

firearms-related crimes remains critical in many regions worldwide, particularly in countries where firearm 

possession is legal. In today's interconnected world, the spread of information, whether true or false, through 

various media channels, including social media, can significantly influence individuals' behavior. This can lead 

to heightened levels of anxiety, decreased impulse control, and an increased susceptibility to radicalization, 

particularly when individuals have access to firearms. 

Recent years have seen a rise in incidents involving harmful weapons in public areas, such as the attacks on 

mosques in New Zealand and active shooter incidents in the USA and Europe. These events highlight the urgent 

need for effective security measures to prevent such tragedies. Closed Circuit Television (CCTV) cameras play 

a crucial role in enhancing security by providing surveillance and evidence for crime investigations. Countries 

around the world have invested heavily in surveillance systems, with millions of cameras installed in public 

spaces. 
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However, traditional surveillance systems relying on human operators to monitor camera feeds have limitations, 

including reduced attention span and the inability to monitor multiple screens simultaneously. To address these 

challenges, there is a growing need for automated surveillance systems capable of detecting threats, such as 

weapons, in real-time and alerting security personnel promptly. 

Despite advancements in technology, there has been limited research on algorithms for weapon detection in 

surveillance cameras, with most studies focusing on concealed weapon detection using X-rays or millimeter 

wave imaging. However, deep learning, particularly Convolutional Neural Networks (CNN), has shown 

remarkable success in image-processing tasks, including object detection and localization. 

This article presents a novel approach to automatic weapon detection and classification in real-time using state-

of-the-art deep learning models. By focusing on pistols, revolvers, and other handheld weapons, the system aims 

to detect potential threats and alert operators and authorities promptly. The research involved creating a custom 

dataset comprising images extracted from CCTV videos, online repositories, and databases such as the Internet 

Movie Firearms Database (IMFDB). Deep learning models, trained using transfer learning and pre-trained 

models such as ImageNet and COCO, were evaluated for their performance in real-time weapon detection. 

The main contributions of this work include: 

A comprehensive study on weapon detection in real-time CCTV video streams, considering low-resolution and 

low-brightness scenarios. 

Identification of the most suitable CNN-based object detector for weapon detection. 

Development of a new dataset tailored for real-time detection. 

Introduction of related confusion classes to reduce false positives and negatives. 

Evaluation of various deep learning models, with YOLOv4 demonstrating the best performance in terms of 

speed and accuracy. 

The remainder of the paper is structured as follows: Section II discusses related work, Section III explains the 

implementation methodology based on deep learning algorithms, Section IV details the dataset construction and 

preprocessing, Section V presents experimental results, and Section VI concludes the paper with discussions on 

future directions. 

 

RELATED WORK 

The problem of real-time detection and classification of objects, particularly in the context of surveillance using 

Closed Circuit Television (CCTV), has garnered increasing attention with advancements in CCTV technology, 

processing hardware, and deep learning models. While early efforts primarily focused on concealed weapon 

detection (CWD), recent research has shifted towards automated weapon detection using deep learning 

algorithms. 

CWD techniques, initially developed for airport security and luggage control, relied on imaging methods such as 

millimeter-wave and infrared imaging. Various fusion-based techniques combining color visual and infrared 

images were proposed to enhance detection accuracy. However, these systems had limitations, including their 

reliance on metal detection, high costs, and health risks associated with X-ray scanners. 

The evolution of CCTV technology has facilitated the application of automated image processing for public 

security purposes. Object detection algorithms have been widely used in surveillance systems for anomaly 

detection, deterrence, and human detection. However, the focus on firearm detection in CCTV footage has been 

relatively limited compared to other object detection tasks. 

Early attempts at firearm detection in surveillance footage date back to 2007, with researchers proposing 

accurate pistol detection models using RGB images. However, these methods were not comprehensive in 

detecting various types of firearms in different scenes. Subsequent approaches utilized sliding window and 

region proposal algorithms, often incorporating Histogram of Oriented Gradient (HOG) models for feature 

extraction. While these methods achieved good accuracies, they were slow for real-time implementation. 
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In recent years, deep learning techniques, particularly Convolutional Neural Networks (CNNs), have shown 

promise in firearm detection. Researchers have explored various CNN architectures, including Faster R-CNN 

and YOLO (You Only Look Once), for real-time weapon detection in CCTV footage. Transfer learning 

approaches, leveraging pre-trained models such as ImageNet, have been employed to enhance detection 

accuracy. 

Notable contributions include the development of novel datasets tailored for real-time detection, the introduction 

of related confusion classes to reduce false positives and negatives, and the evaluation of deep learning models 

for speed and accuracy in real-world scenarios. Recent studies have demonstrated significant improvements in 

detection accuracy, with some achieving precision and recall rates exceeding 90%. 

Overall, while significant progress has been made in firearm detection using deep learning algorithms, 

challenges remain, particularly in real-time implementation and the development of robust datasets for training 

and testing. Future research efforts will likely focus on addressing these challenges to further enhance the 

effectiveness of automated surveillance systems in ensuring public safety and security. 

 

METHODOLOGY 

Deep learning, inspired by the structure and functionality of the human brain, particularly artificial neural 

networks, serves as the foundation for the methodology employed in this work. Specifically, convolutional 

neural networks (CNNs) are leveraged due to their exceptional performance in object classification and 

detection tasks. Both classification and detection algorithms are utilized, with a focus on optimizing precision, 

speed, and localization accuracy for real-time implementation. 

A. OBJECT RECOGNITION 

Object recognition encompasses the processes of classification and localization, both of which are essential 

components of object detection. Classification involves predicting the category or class of an image, typically 

achieved using CNNs to extract features and assign probabilities to different classes. Localization determines 

the precise location of an object within an image, providing coordinates and dimensions for its bounding box. 

Object detection combines classification and localization to identify objects and their locations within an image. 

B. CLASSIFICATION AND DETECTION APPROACH 

Sliding Window/Classification Models: This approach involves sliding a window over the entire image to 

classify individual patches using an object recognition model. While exhaustive, this method is computationally 

intensive due to the need to search at multiple scales and aspect ratios. 

Region Proposal/Object Detection Models: In contrast, region proposal methods generate bounding boxes for 

potential objects within an image, focusing computational resources on regions of interest. Techniques such as 

Selective Search and region-based CNNs (R-CNN) are used to generate region proposals efficiently. 

C. TRAINING MECHANISM 

Training deep learning models involves defining the problem, acquiring relevant datasets, preprocessing the 

data, and optimizing the model parameters using backpropagation and gradient descent algorithms. Training 

aims to minimize the loss function and improve the model's ability to generalize to unseen data. 

D. CONFUSION OBJECT INCLUSION 

To reduce false positives and negatives, relevant "confusion objects" are included in the dataset. These objects, 

such as wallets, cell phones, and metal detectors, resemble the target objects (e.g., pistols) and aid in improving 

overall accuracy and precision by distinguishing between similar classes. 

E. CLASSIFIERS AND OBJECT DETECTORS 

Sliding Window/Classification Models: 

 VGG16 

 InceptionV3 

 Inception ResnetV2 

Object Detectors for Real-Time Detection: 
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 SSD MobilNetV1 

 YoloV3 

 Faster RCNN-Inception ResNetV2 

 YoloV4 

IV. DATASET CONSTRUCTION, ANNOTATION AND PRE-PROCESSING (D-CAP) 

The dataset construction process involves collecting relevant data, annotating images with labels and bounding 

boxes, and preprocessing the data for training. Dataset construction is critical for supervised learning, as the 

model's performance depends on the quality and diversity of the training data. 

DATA PRE-PROCESSING AND ANNOTATION 

In machine learning tasks, the quality and representation of the data significantly influence the performance of 

models. Data pre-processing plays a crucial role in enhancing the effectiveness of machine learning models by 

cleaning, standardizing, and extracting features from the dataset. The final training dataset is obtained after 

applying various pre-processing steps to the collected data. 

Main Steps of Data Preprocessing: 

Image Scaling: Ensuring uniform size or resolution of images in the dataset. 

Mean Normalization: Applying mean normalization to the images. 

Image Labeling: Creating bounding boxes (annotation) on images to identify objects. This involves storing the 

coordinates (x, y) and dimensions (width, height) of labeled objects in a suitable format such as XML, CSV, or 

TXT. 

Image Filtering using OpenCV: Applying image filtering techniques using OpenCV library to enhance image 

quality and reduce noise. 

RGB to Grayscale: Converting images from RGB to grayscale format for simpler processing. 

Equalization and Clahe: Applying histogram equalization and Contrast Limited Adaptive Histogram 

Equalization (CLAHE) techniques to improve image contrast and visibility. 

EXPERIMENTS, RESULTS AND ANALYSIS 

The experiments involved real-time detection of weapons in CCTV streams under various conditions, including 

low resolution and low light. Previous work primarily focused on detecting high-quality images and videos, 

making it challenging to detect objects in real time under less favorable conditions. The performance of different 

models trained and tested on the datasets mentioned in Table 1 was evaluated. 

Results of Pre-processing Techniques: 

Figures 1 and 2 depict the outcomes after applying the aforementioned pre-processing techniques to the images. 

 

 

Figure 1 
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Figure 2 

 

 

Figure 3. Weapon Detection 

Evaluation Metrics: 

The performance of the models was analyzed based on standard metrics such as: 

F1-score: The harmonic-mean of precision and recall, providing a balanced measure of a model's accuracy. 

Frame per Second (FPS): The rate at which frames are processed by the model, crucial for real-time 

applications. 

Mean Average Precision (mAP): The average precision calculated across all classes, indicating the overall 

performance of the model. 

These metrics were calculated using the following equations: 

F1-score: F1 = 2 * (Precision * Recall) / (Precision + Recall) 

Frame per Second (FPS): FPS = Total number of frames processed / Total time taken for processing 

Mean Average Precision (mAP): Calculated based on the precision-recall curve for each class. 

The analysis of results focused on comparing different approaches, such as the sliding window and region 

proposal methods, to address the real-time detection problem. Since pistols and revolvers accounted for a 

significant portion of weapons used in robbery cases, the evaluation considered datasets specifically tailored to 

this problem statement. 

 

CONCLUSION AND FUTURE WORK 

In conclusion, this work presents a novel automatic weapon detection system for real-time monitoring and 

control. Implementing such a system is expected to significantly enhance security and improve law and order, 

particularly in regions plagued by violent activities. By providing a reliable means of detecting weapons in live 

CCTV streams, this system aims to mitigate security threats and create a safer environment for communities. 

The implications of this work extend beyond security, as it has the potential to positively impact the economy by 

instilling confidence among investors and attracting tourists who prioritize safety and security. 

 

Key contributions of this work include: 

Development of a new training database tailored for real-time scenarios. 
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Training and evaluation of state-of-the-art deep learning models using both sliding window/classification and 

region proposal/object detection approaches. 

Investigation of various algorithms to optimize precision and recall in weapon detection. 

Through a series of experiments, it was observed that object detection algorithms with Region of Interest (ROI) 

outperformed those without ROI. Among the tested models, YOLOv4, trained on the new database, exhibited 

superior performance with minimal false positives and negatives. It achieved a mean average precision (mAP) 

of 91.73% and an F1-score of 91%, with a confidence score of nearly 99% across all types of images and 

videos. These results indicate that YOLOv4 effectively serves as an automatic real-time weapon detector, 

surpassing previous research efforts in terms of mAP and F1-score for real-time scenarios. 

 

Future Work: 

Despite the promising results, there remains room for improvement, particularly in reducing false positives and 

negatives. Future work will focus on further refining the precision and recall of the detection system. 

Additionally, there may be opportunities to expand the scope of the system by incorporating additional classes 

or objects of interest. However, the primary focus will be on enhancing the accuracy and reliability of weapon 

detection in real-time CCTV streams. 
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