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Abstract 

Big Data Analytics and Deep Learning are two high-focus of data science. Big Data has become important 

as many organizations both public and private have been collecting massive amounts of domain -specific 

information, which can contain useful information about problems such as national intelligence, cyber 

security, fraud detection, marketing, and medical informatics. Companies such as Google and Microsoft are 

analyzing large volumes of data for business analysis and decisions, impacting existing and future 

technology. Deep Learning algorithms extract highlevel, complex abstractions as data representations 

through a hierarchical learning process. Complex abstractions are learnt at a given level based on relatively 

simpler abstractions formulated in the preceding level in the hierarchy. A key benefit of Deep Learning is 

the analysis and learning of massive amounts of unsupervised data, making it a valuable tool for Big Data 

Analytics where raw data is largely unlabeled and un-categorized. In the present study, we explore how 

Deep Learning can be utilized for addressing some important problems in Big Data Analytics, including 

extracting complex patterns from massive volumes of data, semantic indexing, data tagging, fast information 

retrieval, and simplifying discriminative tasks. We also investigate some aspects of Deep Learning research 

that need further exploration to incorporate specific challenges introduced by Big Data Analytics, including 

streaming data, high-dimensional data, scalability of models, and distributed computing. We conclude by 

presenting insights into relevant future works by posing some questions, including defining data sampling 

criteria, domain adaptation modeling, defining criteria for obtaining useful data abstractions, improving 

semantic indexing, semisupervised learning, and active learning.  
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Introduction  

The general focus of machine learning is the representation of the input data and generalizat ion of the learnt 

patterns for use on future unseen data. The goodness of the data representation has a large impact on the 

performance of machine learners on the data: a poor data representation is likely to reduce the performance of 

even an advanced, complex machine learner, while a good data representation can lead to high performance 

for a relat ively simpler machine learner. Thus, feature engineering, which focuses on constructing features 

and data representations from raw data [1], is an important element of machine learn ing. Feature engineering 

consumes a large portion of the effort in a machine learn ing task, and is typically quite domain specific and 

involves considerable  

human input. For example, the Histogram of Oriented Grad ients (HOG) [2] and Scale Invariant Feature 

Transform (SIFT) [3] are popular feature engineering algorithms developed specifically  for the computer v ision 

domain. Performing feature engineering in  a more automated and general fashion would be a major 

breakthrough in machine learn ing as this would allow pract itioners to automatically  extract  such features 

without direct human input.  

Deep Learning algorithms are one promising avenue of research into the automated extraction of complex 

data representations (features) at high levels of abstraction. Such algorithms develop a layered, hierarchical 

architecture of learning and representing data, where higher-level (more abstract) features are defined in terms 

of lower-level (less abstract) features. The hierarch ical learning arch itecture of Deep Learning algorithms is 

motivated by art ificial intelligence emulating the deep, layered learning process of the primary sensorial areas 

of the neocortex in the human brain, which automatically extracts features and abstractions from the 

underlying data [4-6]. Deep Learn ing algorithms are quite beneficial when dealing with learn ing from large 

amounts of unsupervised data, and typically learn  data representations in a g reedy layer-wise fashion [7,8]. 

Empirical studies have demonstrated that data representations obtained from stacking up nonlinear feature 

extractors (as in  Deep  Learning) often yield  better machine learning results, e.g., improved classification 
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modeling [9], better quality of generated samples by generative probabilistic models [10], and the invariant 

property of data representations [11]. Deep  Learn ing solutions have yielded outstanding results in different 

machine learn ing applications, including speech recognition [12-16], computer vision [7,8,17], and natural 

language processing [18-20]. A more detailed overview of Deep Learning is presented in Section  

“Deep learning in data mining and machine learning”.  

Big Data represents the general realm of problems and techniques used for application domains that collect 

and maintain massive volumes of raw data for domain-specific data analysis. Modern data-intensive 

technologies as well as increased computational and data storage resources have contributed heavily to the 

development of Big Data science [21]. Technology based companies such as Google, Yahoo, Microsoft, and 

Amazon have collected and maintained data that is measured in exabyte proportions or larger. Moreover, 

social media organizations such as Facebook, YouTube, and Twitter have billions of users that constantly 

generate a very large quantity of data. Various organizations have invested in developing products using Big 

Data Analytics to addressing their monitoring, experimentation, data analysis, simulat ions, and other 

knowledge and business needs [22], making it a central topic in data science research.  

Mining and extracting meaningful patterns from massive input data for decisionmaking, predict ion, and 

other inferencing is at the core of Big Data Analytics. In addition to analyzing massive volumes of data, Big  

Data Analytics poses other unique challenges for machine learning and data analysis, including format  

variation of the raw data, fastmoving streaming data, trustworthiness of the d ata analysis, highly distributed 

input sources, noisy and poor quality data, high  dimensionality, scalability o f algorithms, imbalanced input 

data, unsupervised and un-categorized data, limited supervised/labeled data, etc. Adequate data storage, data 

indexing/tagging, and fast informat ion retrieval are other key problems in Big Data Analytics. Consequently, 

innovative data analysis and data management solutions are warranted when working with Big Data. For 

example, in a recent work we examined the high-dimensionality of bioinformat ics domain data and 

investigated feature selection techniques to address the problem [23]. A more detailed overview of Big Data 

Analytics is presented in Section “Big data analytics”.  

The knowledge learnt from (and made available  by) Deep Learning algorithms has been largely untapped in 

the context of Big Data Analytics. Certain Big Data domains, such as computer vision [17] and speech 

recognition [13], have seen the application of Deep Learning largely to improve classification modeling 

results. The ability of Deep Learning to ext ract high-level, complex abstractions and data representations 

from large volumes of data, especially unsupervised data, makes it attractive as a valuable tool for Big Data 

Analtyics. More specifically, Big Data problems such as semantic indexing, data tagging, fast informat ion 

retrieval, and discriminative modeling can be better addressed with the aid of Deep Learn ing. More trad itional 

machine learning and feature engineering algorithms are not efficient enough to extract the complex and non-

linear patterns generally observed in Big  Data. By ext racting such features, Deep  Learning enables the use of 

relatively simpler linear models for Big Data analysis tasks, such as classification and pred iction, which is 

important when developing models to deal with the scale of Big Data. The novelty of this study is that it 

explores the application of Deep Learn ing algorithms for key problems in Big Data Analytics, mot ivating 

further targeted research by experts in these two fields.  

The paper focuses on two key  topics: (1) how Deep Learning can  assist with specific problems  in  Big  Data 

Analytics, and (2) how specific areas of Deep Learning can  be improved to reflect  certain  challenges 

associated with Big Data Analytics. With respect to the first topic, we exp lore the application of Deep 

Learn ing for specific Big Data Analytics, including learn ing from massive volumes of data, semantic 

indexing, discriminative tasks, and data tagging. Our investigation regarding the secon d topic focuses on 

specific challenges Deep Learning faces due to existing problems in Big Data Analytics, including learn ing 

from streaming data, dealing with h igh dimensionality of data, scalability of models, and distributed and 

parallel computing. We conclude by identifying important future areas needing innovation in Deep Learn ing 

for Big Data Analytics, including data sampling for generating useful h igh -level abstractions, domain (data 

distribution) adaption, defining criteria for extracting good data  representations for discriminative and 

indexing tasks, semi-supervised learning, and active learning.  

The remainder of the paper is structured as follows: Section “Deep learn ing in data min ing and machine 

learning” presents an overview of Deep Learn ing for data analysis in data mining and machine learning; 

Section “Big  data analytics” presents an overview of Big  Data Analytics, including key characteristics of Big  

Data and identifying specific data analysis problems faced in Big Data Analytics; Section “A pplicat ions of 

deep learning in b ig data analytics” presents a targeted survey of works investigating Deep Learn ing based 

solutions for data analysis, and discusses how Deep Learning can be applied for Big Data Analytics problems; 

Section “Deep learning challenges in big data analytics” discusses some challenges faced by Deep Learn ing 

experts due to specific data analysis needs of Big  Data; Section “Future work on deep learning in big  data 

analytics” presents our insights into further works that are necessary for extending the application of Deep 

Learning in Big  
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Data, and poses important questions to domain experts; and in Section “Conclusion” we reiterate the focus of 

the paper and summarize the work presented.  

Deep learning in data mining and machine learning  

The main concept in deep leaning algorithms is automating the extraction of representations (abstractions) 

from the data [5,24,25]. Deep learn ing algorithms use a huge amount of unsupervised data to automatically  

extract complex representation. These algorithms are largely motivated by the field of art ificial intelligence, 

which has the general goal of emulat ing the human brain’s ability to observe, analyze, learn, and make 

decisions, especially  for ext remely complex problems. Work pertain ing to thes e complex challenges has been 

a key mot ivation behind Deep Learning algorithms which strive to emulate the hierarchical learning approach 

of the human brain. Models based on shallow learning architectures such as decision trees, support vector 

machines, and case-based reasoning may fall short when attempting to extract  useful in formation from 

complex structures and relationships in the input corpus. In contrast, Deep Learn ing architectures have the 

capability to generalize in non-local and global ways, generating learning patterns and relationships beyond 

immediate neighbors in the data [4]. Deep learn ing is in fact an important step toward artificial intelligence. It  

not only provides complex representations of data which  are suitable for AI tasks but also makes the 

machines independent of human knowledge which is the ultimate goal of AI. It ext racts representations 

directly from unsupervised data without human interference.  

A key concept underlying Deep Learning methods is distributed representations of th e data, in which a large 

number of possible configurations of the abstract features of the input data are feasible, allowing for a 

compact representation of each sample and lead ing to a richer generalizat ion. The number of possible 

configurations is exponentially related to the number of ext racted abstract features. Noting that the observed 

data was generated through interactions of several known/unknown factors, and thus when a data pattern is 

obtained through some configurations of learnt factors, additional (unseen) data patterns can likely be 

described through new configurations of the learnt factors and patterns [5,24]. Compared to learning based on 

local generalizations, the number of patterns that can be obtained using a distributed representation sca les 

quickly with the number of learnt factors.  

Deep learning algorithms lead to abstract representations because more abstract representations are often 

constructed based on less abstract ones. An important advantage of more abstract representations is that they 

can be invariant to the local changes in the input data. Learning such invariant features is an ongoing major 

goal in pattern recognition (for example learning features that are invariant to the face orientation in a face 

recognition task). Beyond being invariant such representations can also disentangle the factors of variation  in  

data. The real data used in AI-related tasks mostly arise from complicated interactions of many sources. For 

example an image is composed of different sources of variations such a light, object shapes, and object 

materials. The abstract representations provided by deep learning algorithms can separate the different 

sources of variations in data.  

Deep learning algorithms are actually Deep arch itectures of consecutive layers. Each layer applies a 

nonlinear transformation on its input and provides a representation in its output. The objective is to learn  a 

complicated and abstract representation of the data in a hierarchical manner by passing the data through 

multip le transformat ion layers. The sensory data (for example pixels in an image) is fed to the first layer. 

Consequently the output of each layer is provided as input to its next layer.  

Stacking up the nonlinear transformation layers is the basic idea in deep learning algorithms. The more 

layers the data goes through in the deep architecture, the more complicated the nonlinear t ransformat ions 

which are constructed. These transformations represent the data, so Deep Learn ing can be considered as 

special case of representation learning algorithms which learn representations of the data in a Deep 

Architecture with multip le levels of representations. The achieved final representation is a highly non -linear 

function of the input data.  

It is important to note that the transformat ions in the layers of deep arch itecture are no nlinear 

transformations which try to extract underlying exp lanatory factors in the data. One cannot use a linear 

transformation like PCA as the transformat ion algorithms in the layers of the deep structure because the 

compositions of linear transformations  yield another linear t ransformat ion. Therefore, there would be no point 

in having a deep arch itecture. For example by providing some face images to the Deep Learning algorithm, at 

the first layer it  can learn  the edges in different orientations; in the second layer it composes these edges to 

learn more complex features like different parts of a face such as lips, noses and eyes. In the third layer it  

composes these features to learn even more complex feature like face shapes of different persons. These fin al 

representations can be used as feature in applications of face recognition. Th is example is p rovided to simply  

explain in an understandable way how a deep learn ing algorithm finds more abstract and complicated 

representations of data by composing representations acquired in a h ierarch ical architecture. However, it must 

be considered that deep learning algorithms do not necessarily attempt to construct a pre -defined sequence of 

representations at each layer (such as edges, eyes, faces), but instead more generally perform non-linear 

transformations in different layers. These transformat ions tend to disentangle factors of variations in data. 
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Translating this concept to appropriate training criteria is still one of the main  open questions in deep learn ing 

algorithms [5].  

The final representation of data constructed by the deep learning algorithm (output of the final layer) 

provides useful information from the data which can be used as features in building classifiers, or even can be 

used for data indexing and other applications which are more efficient when using abstract representations of 

data rather than high dimensional sensory data.  

Learn ing the parameters in a deep architecture is a difficult optimization task, such as learning the 

parameters in neural networks with many hidden layers. In  2006 Hinton proposed learning deep architectures 

in an unsupervised greedy layer-wise learn ing manner [7]. At the beginning the sensory data is fed as learn ing 

data to the first layer. The first layer is then trained based on this data, and the output of the first layer (the 

first level of learnt representations) is provided as learning  data to the second layer. Such iteration is done 

until the desired number of layers is obtained. At this point the deep network is train ed. The representations 

learnt on the last layer can be used for different tasks. If the task is a classification task usually another 

supervised layer is put on top of the last layer and its parameters are learnt (either randomly or by using 

supervised data and keeping the rest of the network fixed). At the end the whole network is fine-tuned by 

providing supervised data to it.  

Here we exp lain two fundamental building blocks, unsupervised single layer learning algorithms which are 

used to construct deeper models: Autoencoders and Restricted Boltzmann Machines (RBMs). These are often 

employed in tandem to construct stacked Autoencoders [8,26] and Deep belief networks [7], which are 

constructed by stacking up Autoencoders and Restricted Boltzmann Machines respectively. Autoencoders, 

also called  autoassociators [27], are networks constructed of 3 layers: input, hidden and output. Autoencoders 

try to learn some representations of the input in the hidden layer in a way  that makes it  possible to reconstruct 

the input in the output layer based on these intermediate representations. Thus, the target output is the input 

itself. A basic Autoencoder learns its parameters by minimizing the reconstruction error. Th is minimization is 

usually done by stochastic gradient descent (much like what is done in Multilayer Perceptron). If the hidden 

layer is linear and the mean squared error is used as the reconstruction criteria, then the Autoencoder will 

learn the first k princip le components of the data. Alternative strategies are proposed to make Autoencoders 

nonlinear which are appropriate to build deep networks as well as to extract meaningfu l representations of 

data rather than performing just as a dimensionality reduction method. Bengio et al. have called these 

methods “regularized  

Autoencoders” in [5], and we refer an interested reader to that paper for more details on algorithms.  

Another unsupervised single layer learning algorithm which is used as a building block in constructing 

Deep Belief Networks is the Restricted Boltzmann machine (RBM). RBMs are most likely the most popular 

version of Boltzmann machine [28]. They contains one visible layer and one hidden layer. The restriction is 

that there is no interaction between the units of the same layer and the connections are solely between units 

from d ifferent layers. The Contrastive Divergence algorithm [29] has mostly been used to train the Boltzmann 

machine.  

Big data analytics  

Big Data generally  refers to data that exceeds the typical storage, processing, and computing capacity of 

conventional databases and data analysis techniques. As a resource, Big Data requires tools and methods that 

can be applied  to analyze and  extract  patterns from large -scale data. The rise of Big  Data has been caused by 

increased data storage capabilities, increased computational processing power, and availability of increased 

volumes of data, which give organizat ion more data than they have computing resources and technologies to 

process. In addition to the obvious great volumes of data, Big Data is also associated with other specific 

complexit ies, often referred to as the four Vs: Volume, Variety, Velocity, and Veracity [22,30,31]. We note 

that the aim of this section is not to extensively cover Big Data, but present a brief overview of its key  

concepts and challenges while keep ing in  mind that the use of Deep  Learning in Big Data Analytics is the 

focus of this paper.  

The unmanageable large Volume of data poses an immediate challenge to conventional computing 

environments and requires scalable storage and a distributed strategy to data querying and analysis. However, 

this large Volume of data is also a major positive feature o f Big Data. Many companies, such as Facebook, 

Yahoo, Google, already have large amounts of data and have recently begun tapping into its benefits [21]. A 

general theme in Big Data systems is that the raw data is increasingly diverse and complex, con sisting of 

largely un-categorized/unsupervised data along with perhaps a small quantity of categorized/supervised data. 

Working with the Variety among different data representations in a given repository poses unique challenges 

with Big Data, which requires Big Data preprocessing of unstructured data in order to extract 

structured/ordered representations of the data for human and/or downstream consumption. In today’s 

dataintensive technology era, data Velocity – the increasing rate at which data is collected and obtained – is 

just as important as the Volume and Variety characteristics of Big Data. While the possibility of data loss 
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exists with streaming data if it  is generally not immediately processed and analyzed, there is the option to save 

fast-moving data into bulk storage for batch processing at a later time. However, the practical importance of 

dealing with Velocity associated with Big Data is the quickness of the feedback loop, that is, process of 

translating data input into useable informat ion. This is especially important in the case of timesensitive 

informat ion processing. Some companies such as Twitter, Yahoo, and IBM have developed products that 

address the analysis of streaming data [22]. Veracity in Big Data deals with the trustworthiness or use fulness 

of results obtained from data analysis, and brings to light the old adage “Garbage -In-Garbage-Out” for 

decision making based on Big Data Analytics. As the number of data sources and types increases, sustaining 

trust in Big Data Analytics presents a practical challenge.  

Big Data Analytics faces a number of challenges beyond those implied by the four Vs. While not meant to 

be an exhaustive list, some key problem areas include: data quality and validation, data cleansing, feature 

engineering, high-d imensionality and data reduction, data representations and distributed data sources, data 

sampling, scalability of algorithms, data visualization, parallel and distributed data processing, real-time 

analysis and decision making, crowdsourcing and semantic input for improved data analysis, tracing and 

analyzing data provenance, data discovery and integration, parallel and distributed computing, exploratory 

data analysis and interpretation, integrating heterogenous data, and developing new models for massive da ta 

computation.  

Applicationsof deep learning in big data analytics  

As stated previously, Deep  Learning algorithms ext ract meaningful abstract representations of the raw data 

through the use of an hierarchical mult i-level learning approach, where in a higher-level more abstract and 

complex representations are learnt based on the less abstract concepts and representations in the lower level(s) 

of the learning hierarchy. While Deep Learning can be applied to learn from labeled data if it is available in  

sufficiently large amounts, it is primarily attractive for learning from large amounts of 

unlabeled/unsupervised data [4,5,25], making it attractive for extracting meaningful representations and 

patterns from Big Data.  

Once the hierarchical data abstractions are learnt from unsupervised data with Deep Learning, more 

conventional discriminative models can be trained with the aid of relatively fewer supervised/labeled data 

points, where the labeled  data is typically  obtained through human/expert  input. Deep Learning algorithms 

are shown to perform better at extract ing non-local and global relat ionships and patterns in the data, 

compared to relatively shallow learning architectures [4]. Other useful characteristics of the learnt abstract 

representations by Deep Learning include: (1) relat ively simple linear models can work effect ively with the 

knowledge obtained from the more complex and more abstract data representations, (2) increased automation 

of data representation extraction from unsupervised data enables its broad application to different data types, 

such as image, textural, audio, etc., and (3) relational and semantic knowledge can be obtained at the higher 

levels of abstraction and representation of the raw data. While there are other useful aspects of Deep Learning 

based representations of data, the specific characteristics mentioned above are particularly important for Big 

Data Analytics.  

Considering each of the four Vs of Big Data characteristics, i.e., Volume, Var iety, Velocity, and Veracity, 

Deep Learning algorithms and architectures are more aptly suited to address issues related to Volume and 

Variety of Big Data Analytics. Deep Learn ing inherently explo its the availability of massive amounts of data, 

i.e. Volume in Big Data, where algorithms with shallow learning hierarchies fail to exp lore and understand 

the higher complexit ies of data patterns. Moreover, since Deep Learn ing deals with  data abstraction and 

representations, it is quite likely suited for analyzing raw data presented in different formats and/or from 

different sources, i.e . Variety in  Big Data, and may minimize need for input from human experts to ext ract 

features from every  new data type observed in Big  Data. While presenting different challenges fo r more 

conventional data analysis approaches, Big Data Analytics presents an important opportunity for developing 

novel algorithms and models to address specific issues related to Big Data. Deep Learning concepts provide 

one such solution venue for data analyt ics experts and practitioners. For example, the extracted 

representations by Deep Learning can be considered as a practical source of knowledge for decision -making, 

semantic indexing, information retrieval, and for other purposes in Big Data Analytics, and in addition, 

simple linear modeling techniques can be considered for Big Data Analytics when complex data is 

represented in higher forms of abstraction.  

In the remainder o f this section, we summarize some important works that have been performed  in  t he field  

of Deep Learn ing algorithms and architectures, including semantic indexing, discriminative tasks, and data 

tagging. Our focus is that by presenting these works in Deep Learn ing, experts can observe the novel 

applicability of Deep Learn ing techniques in Big Data Analytics, part icularly since some of the applicat ion 

domains in the works presented involve large scale data. Deep  Learning algorithms are applicab le to d ifferent 

kinds of input data; however, in this section we focus on its application on image, textual, and audio data.  
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Semantic indexing  

A key task associated with Big Data Analytics is information retrieval [21]. Efficient storage and retrieval of 

informat ion is a growing problem in  Big Data, particularly  since very large-scale quantities of data such as 

text, image, v ideo, and audio are being collected and made available across various domains, e.g., social 

networks, security systems, shopping and marketing systems, defense systems, fraud detection, and cyber 

traffic monitoring. Previous strategies and solutions for information storage and retrieval are challenged by 

the massive volumes of data and different data representations, both associated with Big Data. In these 

systems, massive amounts of data are available that needs semantic inde xing rather than being stored as data 

bit strings. Semantic indexing presents the data in a more efficient manner and makes it  useful as a source for 

knowledge discovery and comprehension, for example by making search engines work more quickly and 

efficiently.  

Instead of using raw input fo r data indexing, Deep Learning can be used to generate highlevel abstract data 

representations which will be used for semantic indexing. These representations can reveal complex 

associations and factors (especially  when the raw input was Big  Data), leading to  semantic knowledge and 

understanding. Data representations play an important role in the indexing of data, for example by allowing 

data points/instances with relat ively similar representations to be stored closer to o ne another in memory, 

aiding in efficient informat ion retrieval. It should be noted, however, that the high -level abstract data 

representations need to be meaningful and demonstrate relational and semantic association in order to actually 

confer a good semantic understanding and comprehension of the input.  

While Deep Learning aids in providing a semantic and relational understanding of the data, a vector 

representation (corresponding to the extracted representations) of data instances would provide faster 

searching and informat ion retrieval. More specifically, since the learnt complex data representations contain 

semantic and relational information instead of just raw bit data, they can directly be used for semantic 

indexing when each data point (for example a given text document) is presented by a vector representation, 

allowing for a vector-based comparison which is more efficient than comparing instances based directly on 

raw data. The data instances that have similar vector representations are likely to have similar semantic 

meaning. Thus, using vector representations of complex h igh-level data abstractions for indexing the data 

makes semantic indexing feasible. In the remainder of this section, we focus on document indexing based on 

knowledge gained from Deep Learn ing. However, the general idea of indexing based on data representations 

obtained from Deep Learning can be extended to other forms of data.  

Document (or textual) representation is a key  aspect in information ret rieval for many domains. The goa l o f 

document representation is to create a representation that condenses specific and unique aspects of the 

document, e.g. document topic. Document ret rieval and classification systems are largely based on word 

counts, representing the number of t imes each word occurs in  the document. Various document retrieval 

schemas use such a strategy, e.g., TF-IDF [32] and BM25 [33]. Such document representation schemas 

consider individual words to be dimensions, with different dimensions being independent. In practic e, it is 

often observed that the occurrence of words are highly  correlated. Using Deep  Learning techniques to extract 

meaningful data representations makes it possible to obtain semantic features from such high -dimensional 

textual data, which in turn also leads to the reduction of the dimensions of the document data representations.  

Hinton et al. [34] describe a Deep Learning generative model to learn the binary codes for documents. The 

lowest layer of the Deep Learning network represents the wordcount vector of the document which accounts as 

high-dimensional data, while the highest layer represents the learnt binary code of the document. Using 128-bit 

codes, the authors demonstrate that the binary codes of the documents that are semantically similar lay re latively 

closer in the Hamming space. The binary code of the documents can then be used for information retrieval. For 

each query document, its Hamming distance compared to all other documents in the data is computed and the 

top D similar documents are retrieved. Binary codes require relatively little storage space, and in addition they 

allow relatively quicker searches by using algorithms such as fast-bit counting to compute the Hamming 

distance between two binary codes. The authors conclude that using these binary codes for document retrieval is 

more accurate and faster than semantic-based analysis.  

Deep Learning generative models can also be used to produce shorter binary codes by forcing the highest 

layer in the learn ing hierarchy to use a relatively small number of variab les. These shorter binary codes can 

then simply  be used as memory  addresses. One word of memory is used to describe each document in such a 

way that a small Hammingball around that memory  address contains semantically similar documents – such a 

technique is referred  as “semantic hashing” [35]. Using such a strategy, one can perform information retrieval 

on a very large document set with the retrieval time being independent of the document set size. Techniques 

such as semantic hashing are quite attractive for information ret rieval, because documents that are similar to 

the query document can be retrieved by finding all the memory addresses that differ from the memory address 

of the query document by a few bits. The authors demonstrate that  “memory hashing” is much faster than 

locality-sensitive hashing, which is one of the fastest methods among existing  
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algorithms. In addit ion, it is shown that by providing a document’s binary codes to algorithms such as TF-IDF 

instead of providing the entire document, a h igher level of accuracy can be achieved. While Deep Learn ing 

generative models can have a relatively slow learning/training time for producing binary codes for document 

retrieval, the resulting knowledge y ields fast inferences which is one major goal of Big Data Analytics. More 

specifically, p roducing the binary code for a new document requires just a few vector matrix computations 

performing a feed-forward pass through the encoder component of the Deep Learning network architecture.  

To learn better representations and abstractions, one can use some supervised data in train ing the Deep 

Learn ing model. Ranzato et al. [36] present a study in which parameters of the Deep Learning model are 

learnt based on both supervised and unsupervised data. The advantages of such a strategy are that there is no 

need to completely label a large collection of data (as some unlabeled data is expected) and that the model has 

some prior knowledge (v ia the supervised data) to capture relevant class/label in formation in the data. In other 

words, the model is required to learn data representations that produce good reconstructions of the input in 

addition to providing good predictions of document class labels. The authors show that for learning compact 

representations, Deep Learning models are better than shallow learn ing models. The compact representations 

are efficient because they require fewer computations when used in indexing, and in addit ion, also need less 

storage capacity.  

Google’s “word2vec” tool is another technique for automated extraction of semantic representations from 

Big Data. This tool takes a large-scale text  corpus as input and produces the word vectors as output. It first 

constructs a vocabulary from the train ing text data and then learns vector representation of words, upon which 

the word vector file can be  

used as features in many Natural Language Processing (NLP) and machine learning applications. Miklov  et al.  

[37] introduce techniques to learn h igh-quality word vectors from huge datasets with hundreds of millions of 

words (including some datasets containing 1.6 b illion words), and with millions of distinct words in the 

vocabulary. They focus on artificial neural networks to learn the d istributed representation of words. To train  

the network on such a massive dataset, the models are implemented on top of the large -scale distributed 

framework “DistBelief” [38]. The authors find that word vectors which are trained on massive amounts of data 

show subtle semantic relat ionships between words, such as a city and the country it belongs to – for example,  

Paris belongs to France and Berlin belongs to Germany. Word vectors with such semantic relat ionships could be 

used to improve many existing NLP applications, such as machine translation, informat ion retrieval, and  

question response systems. For example, in a related work, Miklov et al. [39] demonstrate how word2vec can be 

applied for natural language translation.  

Deep Learn ing algorithms make it possible to learn complex nonlinear representations between word  

occurrences, which allow the capture of h igh-level semantic aspects of the document (which could  not normally  

be learned with linear models). Capturing these complex representations requires massive amounts of data for 

the input corpus, and producing labeled data from this massive input is a difficult task. With Deep  Learning one 

can leverage unlabeled  documents (unsupervised data) to have access to a much larg er amount of input data, 

using a smaller amount of supervised data to improve the data representations and make them more related to 

the specific learning and inference tasks. The extracted data representations have been shown to be effect ive for  

retrieving documents, making them very useful for search engines.  

Similar to textual data, Deep Learning can be used on other kinds of data to extract semantic representations 

from the input corpus, allowing for semantic indexing of that data. Given the relatively  recent emergence of 

Deep Learning, additional work needs to be done on using its hierarchical learning strategy as a method for 

semantic indexing of Big Data.  

An remaining open question is what criteria is used to define “similar” when trying to extract data 

representations for indexing purposes (recall, data points that are semantically similar will have similar data 

representations in a specific distance space).  

Discriminative tasks and semantic tagging  

In performing  discriminative tasks in Big Data Analytics one can use Deep Learning algorithms to extract  

complicated nonlinear features from the raw data, and then use simple linear models to perform d iscriminative 

tasks using the extracted features as input. Th is approach has two advantages: (1) ext racting features with Deep  

Learn ing adds nonlinearity to the data analysis, associating the discriminative tasks closely to Artificial  

Intelligence, and (2) apply ing relatively simple linear analytical models on  the ext racted features is more 

computationally efficient, which  is important for Big Data Analytics. The problem of developing efficient linear 

models for Big Data Analytics has been extensively investigated in the literature [21]. Hence, developing  

nonlinear features from massive amounts of input data allows the data analysts to benefit from the knowledge 

available through the massive amounts of data, by applying the learnt knowledge to simpler linear models for  

further analysis. This is an important benefit of using Deep Learn ing in Big Data Analytics, allowing  

practitioners to accomplish complicated tasks related to  Artificial Intelligence, such as image comprehension, 
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object recognition in  images, etc., by using simpler models. Thus discriminative tasks  are made relat ively easier  

in Big Data Analytics with the aid of Deep Learning algorithms.  

Discriminative analysis in  Big  Data Analytics can be the primary purpose of the data analysis, or it can  be 

performed to conduct tagging (such as semantic tagging) on  the data for the purpose of searching. For example, 

Li et al. [40] explore the Microsoft Research Audio Video Indexing System (MAVIS) that uses Deep Learning 

(with Artificial Neural Networks) based speech recognition technology to enable searching of a udio and video 

files with speech. To converting digital audio and video signals into words, MAVIS automat ically generates 

closed captions and keywords that can increase accessibility and discovery of audio and v ideo files with speech 

content.  

Considering the development of the Internet and the exp losion of online users in recent years, there has been a 

very rapid increase in the size o f dig ital image co llect ions. These come from sources such as social networks, 

global positioning satellites, image sharing systems, medical imaging systems, military surveillance, and 

security systems. Google has explored and developed systems that provide image searches (e.g., the Google 

Images search service), including search systems that are only based on the image file na me and document 

contents and do not consider/relate to the image content itself [41,42]. Towards achieving artificial intelligence 

in providing improved image searches, practitioners should move beyond just the textual relat ionships of 

images, especially since textual representations of images are not always available in massive image collection 

repositories. Experts should strive towards collecting and organizing these massive image data collections, such 

that they can be browsed, searched, and retrieved more efficiently. To  deal with large scale image data 

collections, one approach to consider is to automate the process of tagging images and ext racting semantic 

informat ion from the images. Deep Learning presents new frontiers towards constructing complicat ed 

representations for image and video data as relatively h igh levels of abstractions, which can then be used for 

image annotation and tagging that is useful for image indexing and retrieval. In the context of Big Data 

Analytics, here Deep Learning would aid in the discriminative task of semantic tagging of data.  

Data tagging is another way to semantically index the input data corpus. However, it should not be confused 

with semantic indexing as discussed in the prior section. In semantic indexing, the focu s is on using the Deep 

Learn ing abstract representations directly for data indexing purposes. Here the abstract data representations are 

considered as features for performing the discriminative task of data tagging. This tagging on data can also be 

used for data indexing as well, but the primary idea here is that Deep Leaning makes it possible to tag massive 

amounts of data by applying  simple linear modeling methods on complicated features that were ext racted by 

Deep Learn ing algorithms. The remainder of this section focuses largely on some results from using Deep 

Leaning for discriminative tasks that involve data tagging.  

At the ImageNet Computer Vision Competition, Hinton et al. [17] demonstrated an approach using Deep 

Learn ing and Convolutional Neural Networks which outperformed other existing approaches for image object 

recognition. Using the ImageNet  dataset, one of the largest for image object  recognition, Hinton’s team showed 

the importance of Deep Learn ing for improving image searching. Dean et al. [38] demonstrated further success 

on ImageNet by using a similar Deep Learning modeling approach with a large-scale software infrastructure for 

training an artificial neural network.  

Some other approaches have been tried for learning and extracting features from unlabeled image data, 

include Restricted Boltzmann Machines (RBMs) [7], autoencoders [26], and sparse coding [43]. However, these 

were on ly able to extract low-level features, such as edge and blob detection. Deep Learning can also be used to 

build very high-level features for image detection. For example, Google and Stanford formulated a very large 

deep neural network that was able to learn very  high-level features, such as face detection or cat detection from 

scratch (without any priors) by just us ing unlabeled data [44]. Their work was a large scale investigation on the 

feasibility of building high-level features with Deep Learning using only unlabeled (unsupervised) data, and 

clearly demonstrated the benefits of using Deep Learning with  unsupervis ed data. In Google’s experimentation, 

they trained a 9-layered locally connected sparse autoencoder on 10 million 200×200 images downloaded 

randomly from the Internet. The model had 1 billion connections and the training time lasted for 3 days. A 

computational cluster of 1000 machines and 16000 cores was used to train the network with model parallelism 

and asynchronous SGD (Stochastic Gradient Descent). In  their experiments they obtained neurons that function 

like face detectors, cat detectors, and human body detectors, and based on these features their approach also 

outperformed the state-of-the-art and recognized 22,000 object categories from the ImageNet dataset. This 

demonstrates the generalization ability of abstract representations extracted by Deep Learning algorithms on 

new/unseen data, i.e., using features ext racted from a given dataset to successfully perform a d iscriminative task 

on another dataset. While Google’s work involved the question of whether it is possible to build a face feature 

detector by just using unlabeled data, typically in computer vision labeled images are used to learn  useful 

features [45]. For example, a large collection of face images with a bounding box around the faces can be used 

to learn a face detector feature. However, trad itionally it would require a very large amount of labeled data to 

find the best features. The scarcity of labeled data in image data collections poses a challenging problem.  
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There are other Deep  Learning works that have explored  image tagging. Socher et  al. [46] introduce recursive 

neural networks for predicting a tree structure for images in multip le modalit ies, and is the first Deep Learning  

method that achieves very good results on segmentation and annotation of complex image scenes. The recursive 

neural network arch itecture is able to predict h ierarch ical tree structures for scene images, and outperforms  

other methods based on conditional random fields or a combination of other methods, as well as outperforming  

other existing methods in segmentation, annotation and scene classification. Socher et  al. [46] also show that 

their algorithm is a natural tool for predicting tree structures by using it to parse natural language sentences. 

This demonstrates the advantage of Deep Learn ing as an effective approach for ext racting data representations 

from d ifferent varieties of data types. Kumar et al. [47] suggest that recurrent neural networks can be used to 

construct a meaningful search space via Deep Learn ing, where the search space can then be used for a designed-

based search.  

Le et al. [48] demonstrate that Deep Learning can be used for action scene recognition as well as video data 

tagging, by using an independent variant analysis to learn invariant spatio -temporal features from v ideo data. 

Their approach outperforms other existing methods when combined with Deep Learning techniques such as 

stacking and convolution to learn hierarchical representations. Previous works used to adapt hand designed 

feature for images like SIFT and HOG to the video domain. The Le et al. [48] study shows that extracting 

features directly from video data is a very important research direction, which can be also generalized to many 

domains.  

Deep Learn ing has achieved remarkable results in ext racting useful features (i.e., represent ations) for 

performing discriminative tasks on image and video data, as well as ext racting representations from other kinds 

of data. These discriminative results with Deep Learning are useful fo r data tagging and informat ion retrieval 

and can be used in search engines. Thus, the high-level complex data representations obtained by Deep 

Learn ing are useful for the application of computationally feasible and relatively simpler linear models for Big  

Data Analytics. However, there is considerable work that remains for further exp lorat ion, including determin ing 

appropriate objectives in learn ing good representations for performing discriminative tasks in Big DataAnalytics 

[5,25].  

Deep learning challenges in big data analytics  

The prior section focused on emphasizing the applicability and benefits of Deep Learn ing algorithms for Big  

Data Analytics. However, certain characteristics associated with  Big  Data pose challenges for modify ing and 

adapting Deep Learning to address those issues. This section presents some areas of Big Data where Deep 

Learn ing needs further exploration, specifically, learning with streaming data, dealing with high -dimensional 

data, scalability of models, and distributed computing.  

Incremental learning for non-stationary data  

One of the challenging aspects in Big Data Analytics is dealing with streaming and fastmoving input data. Such 

data analysis is useful in monitoring tasks, such as fraud detection. It is important to adapt Deep Learn ing to 

handle streaming data, as there is a need for algorithms that can deal with large amounts of continuous input 

data. In this section, we d iscuss some works associated with Deep Learning and streaming data, including 

incremental feature learning and extraction [49], denoising autoencoders [50], and deep b elief networks [51].  

Zhou et al. [49] describe how a Deep Learning algorithm can  be used for incremental feature learn ing on very 

large datasets, employing denoising autoencoders [50]. Denoising autoencoders are a variant of autoencoders 

which extract features from corrupted input, where the extracted features are robust to noisy data and good for 

classification purposes. Deep Learning  algorithms in  general use hidden layers to contribute towards the 

extraction of features or data representations. In a denoising autoencoder, there is one hidden layer which 

extracts features, with the number of nodes in this hidden layer in itially  being the same as the number of 

features that would be ext racted. Incrementally, the samples that do not conform to the given objective function 

(for example, their classification error is more than a threshold, or their reconstruction error is high) are 

collected and are used for adding new nodes to the hidden layer, with these new nodes being initialized based on 

those samples. Subsequently, incoming new data samples are used to jointly retrain all the features. This 

incremental feature learning and mapping can improve the discriminative or generative objective function; 

however, monotonically adding features can lead to having a lot of redundant features and overfitting of data. 

Consequently, similar features are merged to produce a more compact set of features. Zhou et al. [49] 

demonstrate that the incremental feature learning method quickly converges to the optimal number of feat ures 

in a large-scale online setting. This kind of incremental feature extraction is useful in applications where the 

distribution of data changes with respect to time in massive online data streams. Incremental feature learn ing 

and extraction can be generalized for other Deep Learning algorithms, such as RBM [7], and makes it possible 

to adapt to new incoming stream of an online large-scale data. Moreover, it avoids expensive cross -validation 

analysis in selecting the number of features in large-scale datasets.  

Calandra et al. [51] introduce adaptive deep belief networks which demonstrates how Deep Learning can be 

generalized to learn  from online non-stationary and streaming  data. Their study exploits the generative property  
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of deep belief networks to mimic the samples from the original data, where these samples and the new observed 

samples are used to learn the new deep belief network which has adapted to the newly observed data. However,  

a downside of an adaptive deep belief network is the requirement for constant memory consumption.  

The targeted works presented in this section provide empirical support to further exp lore and develop novel 

Deep Learning algorithms and architectures for analyzing large-scale, fast moving streaming data, as is 

encountered in some Big Data application domains such as social media feeds, marketing and financial data 

feeds, web click stream data, operational logs, and metering data. For example, Amazon Kinesis is a managed 

service designed to handle real-time streaming of Big Data – though it is not based on the Deep Learning  

approach.  

High-dimensionaldata  

Some Deep Learning algorithms can become prohibitively computationally -expensive when dealing with high-

dimensional data, such as images, likely due to the often slow learn ing process associated with a deep layered  

hierarchy of learning data abstractions and representations from a lower-level layer to a h igher-level layer. That  

is to say, these Deep Learning algorithms can be stymied when working with Big Data that exh ibits large 

Volume, one of the four Vs associated with Big Data Analytics. A high -dimensional data source contributes 

heavily to the volume of the raw data, in addition to complicating learning from the data.  

Chen et al. [52] introduce marginalized stacked denoising autoencoders (mSDAs) which scale effectively for  

high-dimensional data and is computationally faster than regular stacked denoising autoencoders (SDAs). Their  

approach marginalizes noise in SDA train ing and thus does not require stochastic gradient de scent or other 

optimization algorithms to learn parameters. The marg inalized denoising autoencoder layers to have hidden 

nodes, thus allowing a closed-form solution with substantial speed-ups. Moreover, marginalized SDA only has 

two free meta-parameters, controlling the amount of noise as well as the number of layers to be stacked, which  

greatly simplifies the model selection process. The fast training time, the capability to scale to large -scale and  

highdimensional data, and implementation simplicity make mSDA a promising method with appeal to a large 

audience in data mining and machine learning.  

Convolutional neural networks are another method which scales up effectively on highdimensional data. 

Researchers have taken advantages of convolutional neural networks on ImageNet dataset with 256×256 RGB 

images to achieve state of the art results [17,26]. In  convolutional neural networks, the neurons in the hidden 

layers units do not need to be connected to all of the nodes in the previous layer, but just to the neurons that are 

in the same spatial area. Moreover, the resolution of the image data is also reduced when moving toward higher 

layers in the network.  

The application of Deep Learn ing algorithms for Big Data Analytics involving highdimensional data remains 

largely  unexplored, and warrants development of Deep Learn ing based solutions that either adapt approaches 

similar to the ones presented above or develop novel solutions for addressing th e high-dimensionality found in 

some Big Data domains.  

Large-scale models  

From a computation and analytics point of view, how do we scale the recent successes of Deep Learn ing to 

much larger-scale models and massive datasets? Empirical results have demons trated the effectiveness of large-

scale models [53-55], with part icular focus on models with a very large number of model parameters which  are 

able to extract more complicated features and representations [38,56].  

Dean et al. [38] consider the problem of train ing a Deep Learn ing neural network with billions of parameters 

using tens of thousands of CPU cores, in the context of speech recognition and computer vision. A software 

framework, DistBelief, is developed that can utilize computing clusters with thousands of machines to train 

large-scale models. The framework supports model parallelis m both within a machine (via multithreading) and 

across machines (via message passing), with the details of parallelis m, synchronization, and communication 

managed by DistBelief. In addit ion, the framework also supports data parallelis m, where multiple replicas of a 

model are used to optimize a single objective. In order to make large-scale distributed training possible an 

asynchronous SGD as well as a distributed batch optimization procedure is developed that includes a distributed 

implementation of L-BFGS (Limited-memory Broyden-Fletcher-GoldfarbShanno, a quasiNewton method for 

unconstrained optimization). The primary idea is to train multip le versions of the model in parallel, each 

running on a different node in the network and analyzing different subsets of data. The authors report that in 

addition to accelerating the t rain ing of conventional sized models, their framework can also train models that 

are larger than could be contemplated otherwise. Moreover, while the framework focuses on training large -scale 

neural networks, the underlying algorithms are applicab le to other gradientbased learning techniques. It should 

be noted, however, that the extensive computational res ources utilized by DistBelief are generally unavailab le to 

a larger audience.  
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Coates et al. [56] leverage the relatively inexpensive computing power of a cluster of GPU servers. More 

specifically, they develop their own system (using neural networks) based on Commodity Off-The-Shelf High 

Performance Computing (COTS HPC) technology and introduce a high -speed communication infrastructure to 

coordinate distributed computations. The system is able to train  1 billion parameter networks on just 3 machines 

in a couple of days, and it can  scale to networks with over 11 b illion parameters using just 16 machines and 

where the scalability is comparable to that of DistBelief. In comparison to the computational resources used by 

DistBelief, the distributed system network based on COTS HPC is more generally available to a larger 

audience, making it a reasonable alternative for other Deep Learning experts exploring large-scale models.  

Large-scale Deep  Learning models are quite suited to handle massive volumes of input associated with Big  

Data, and as demonstrated in the above works they are also better at learning complex data patterns from large 

volumes of data. Determin ing the optimal number of model parameters in such large -scale models and 

improving their computational practicality pose challenges in Deep Learning for Big Data Analytics. In addition  

to the problem of handling massive volumes of data, large-scale Deep Learning models for Big Data Analytics 

also have to contend with other Big Data problems, such as domain  adaptation (see next  section) and streaming  

data. This lends to the need for further innovations in large-scale models for Deep Learning algorithms and 

architectures.  

Future work on deep learning in big data analytics  

In the prior sections, we discussed some recent applications of Deep Learning algorithms for Big Data 

Analytics, as well as identified some areas where Deep Learning research needs further exp loration to address 

specific data analysis problems observed in Big Data. Considering the low-maturity of Deep Learn ing, we note 

that considerable work remains to done. In this section, we d iscuss our insights on some remaining questions in  

Deep Learning research, especially on work needed for improv ing machine learning and the formulat ion of the 

high-level abstractions and data representations for Big Data.  

An important problem is whether to utilize the entire Big Data input corpus available when analyzing data 

with Deep Learn ing algorithms. The general focus is to apply Deep Learn ing algorithms to tra in the high-level 

data representation patterns based on a portion of the availab le input corpus, and then utilize the remaining input 

corpus with the learnt patterns for extracting the data abstractions and representations. In the context of this 

problem, a question to explore is what volume of input data is generally necessary to train useful (good) data 

representations by Deep Learning algorithms which can then be generalized for new data in the specific Big  

Data application domain.  

Upon further exploring the above problem, we recall the Variety characteristic of Big Data Analytics, which  

focuses on the variation of the input data types and domains in Big Data. here, by considering the shift between  

the input data source (for training the representations) and the target data source (for generalizing the 

representations), the problem becomes one of domain  adaptation for Deep Learning in Big Data Analytics. 

Domain adaptation during learning is an important focus of study in Deep Learning [57,58], where the 

distribution of the training data (from which the representations are learnt) is different from the distribution of 

the test data (on which the learnt representations are deployed).  

Glorot et al. [57] demonstrate that Deep Learning is able to discover intermediate data representations in a 

hierarchical learn ing manner, and that these representations are meaningful to, and can be shared among, 

different domains. In their work, a stacked denoising autoencoder is initially used to learn features and patterns 

from unlabeled data obtained from different source domains. Subsequently, a support vector machine (SVM) 

algorithm utilizes the learnt features and patterns for application on labeled data from a g iven source domain, 

resulting in a linear classification model that outperforms other methods. This domain adaptation study is 

successfully applied on a large industrial strength dataset consisting of 22 source domains. However, it should 

be noted that their study does not explicit ly encode the distribution shift o f the data between the source domain  

and the target domains. Chopra et al. [58] propose a Deep Learn ing model (based on neural networks) for 

domain  adaptation which strives to learn a useful (for pred iction purposes) representation of the unsupervised 

data by taking into consideration informat ion available from the distribution shift between the training and test 

data. The focus is to hierarchically learn multip le intermediate representations along an interpolating path 

between the training and testing doma ins. In the context of object recognition, their study demonstrates an 

improvement over other methods. The two studies presented above raise the question about how to increase the 

generalization capacity of Deep Learning data representations and patterns, noting that the ability to generalize 

learnt patterns is an important requirement in Big Data Analytics where often there is a distribution shift 

between the input domain and the target domain.  

Another key area of interest would be to explore the question  of what criteria is necessary and should be 

defined for allowing the extracted data representations to provide useful semantic meaning to the Big Data. 

Earlier, we discussed some studies that utilize the data representations extracted through Deep Learnin g for 

semantic indexing. Bengio et al. [5] present some characteristics of what constitutes good data representations 

for performing discriminative tasks, and point to the open question regarding the definition o f the criteria for 
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learning good data representations in Deep Learning. Compared to more conventional learn ing algorithms 

where misclassification error is generally used as an important criterion for model training and learning patterns, 

defining a corresponding criteria for t rain ing Deep Learning algorithms with Big Data is unsuitable since most 

Big Data Analytics involve learning from largely unsupervised data. While availab ility of supervised data in 

some Big  Data domains can be helpful, the question of defining the criteria for obtaining good dat a abstractions 

and representations still remains largely unexplored in Big Data Analytics. Moreover, the question of defining 

the criteria required  for extracting good data representations leads to the question of what would  constitute a 

good data representation that is effective for semantic indexing and/or data tagging.  

In some Big Data domains, the input corpus consists of a mix o f both labeled and unlabeled data, e.g., cyber 

security [59], fraud detection [60], and computer v ision [45]. In such cases, Deep Learning algorithms can 

incorporate semi-supervised training methods towards the goal of defining criteria for good data representation 

learning. For example, following learn ing representations and patterns from the unlabeled/unsupervised data, 

the available labeled/supervised data can be exp loited to further tune and improve the learnt representations and 

patterns for a specific analytics task, including semantic indexing or discriminative modeling. A variat ion of 

semi-supervised learning in data mining, active learning methods could also be applicable towards obtaining 

improved data representations where input from crowdsourcing or human experts can be used to obtain labels 

for some data samples which can then be used to better tune and improve the learnt data representations.  

Conclusion  

In contrast to more conventional machine learning and feature engineering algorithms, Deep  Learning has an  

advantage of potentially providing a solution to address the data analysis and learning problems found in  

massive volumes of input data. More specifically, it  aids in automatically extracting complex data 

representations from large volumes of unsupervised data. This makes it a valuable tool fo r Big Data Analytics, 

which involves data analysis from very large collect ions of raw data that is generally unsupervised and 

uncategorized. The hierarchical learning and ext raction of d ifferent levels of complex, data abstractions in Deep  

Learn ing provides a certain degree of simplification for Big Data Analytics tasks, especially for analyzing  

massive volumes of data, semantic indexing, data tagging, information retrieval, and discriminative tasks such a 

classification and prediction.  

In the context of discussing key works in the literature and provid ing our insights on those specific topics, this  

study focused on two important areas related to Deep  Learning and Big Data: (1) the application o f Deep  

Learn ing algorithms and architectures for Big Data Analytics, and (2) how certain characteristics and issues of 

Big Data Analytics pose unique challenges towards adapting Deep Learning algorithms for those problems. A  

targeted survey of important literature in Deep Learning research and applicat ion to different domains is  

presented in the paper as a means to identify how Deep Learning can be used for different purposes in Big Data 

Analytics.  

The low-maturity of the Deep Learn ing field warrants extensive further research. In particular, more work is  

necessary on how we can adapt Deep Learning algorithms for problems associated with Big Data, including  

high dimensionality, streaming data analysis, scalability of Deep Learn ing models, improved formulat ion of 

data abstractions, distributed computing, semantic indexing, data tagging, informat ion retrieval, criteria for  

extracting good data representations, and domain adaptation. Future works should focus on addressing one or 

more of these problems often seen in Big Data, thus contributing to the Deep Learning and Big Data Analytics 
research corpus.  
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