
Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2396

Deployment of a Three-Tier Web-Application

Using DevSecOps

Palash Sharma(PIET21CS122)

 Poornima Institute of Engineering and Technology

 Dept. of Computer Engineering

 Jaipur, India

Narendra Kumar(PIET2CS110)

 Poornima Institute of Engineering and Technology

 Dept. of Computer Engineering

 Jaipur, India

Mr. Karan Tolambiya(PIET21CS089)

 Poornima Institute of Engineering and Technology

 Jaipur, India

Abstract

The paradigm shift from monolithic deployments to microservices, containers, and cloud-native systems has

fundamentally altered how modern applications are developed and managed. This paper introduces the

Wanderlust Mega Project, a three-tier web application engineered using advanced DevSecOps practices to

facilitate continuous integration, delivery, and security. Designed specifically for the dynamic nature of the

travel industry, the project leverages Kubernetes-based orchestration, Infrastructure as Code (IaC), automated

security testing, and container optimization to build a robust, scalable, and secure environment. This work

evaluates the project’s design, architecture, implementation, and performance analysis. The inclusion of AI-

based observability, blue-green deployment, and chaos testing ensures operational resilience and long-term

viability. The findings serve as a case study for integrating DevSecOps in complex software development

environments.

Keywords— DevSecOps, CI/CD, Cloud Infrastructure, Kubernetes, Docker, Terraform, Infrastructure as Code,

OWASP, Monitoring, Observability, Security Automation

I. INTRODUCTION

1.1 Context and Motivation

The digital landscape continues to evolve rapidly, driven by rising user demands, shortened release cycles, and

an increasing need for secure, scalable systems. Traditional Software Development Life Cycles (SDLC), though

reliable in structured environments, often struggle to meet these modern expectations. Manual deployments,

delayed feedback loops, and the lack of integration between development and operations lead to bottlenecks,

reduced productivity, and compromised software quality.

The travel and tourism sector, characterized by dynamic pricing models, personalized itineraries, and real-time

booking systems, requires high availability and rapid scalability. System downtime or latency can directly

impact user trust and revenue. As applications grow more complex and decentralized, the need for automated,

secure, and resilient deployment strategies becomes paramount. DevSecOps offers a promising solution by

embedding security within every phase of the software pipeline—from planning to post-deployment monitoring.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2397

This paper focuses on the development and deployment of a three-tier web application for the Wanderlust Mega

Project using DevSecOps principles. The solution emphasizes real-time monitoring, security-first development,

and automated deployments within a Kubernetes-based cloud environment.

1.2 Project Objectives

The key goals of this project are as follows:

● Accelerated Development: Integrate CI/CD pipelines to enable rapid and automated builds, testing,

and deployments.

● Enhanced Scalability: Utilize Kubernetes and container-based architectures to auto-scale based on

traffic and load.

● Integrated Security: Embed tools like OWASP ZAP, SonarQube, and Trivy into the development

lifecycle to proactively mitigate risks.

● Full Observability: Implement Prometheus, Grafana, and Jaeger for real-time system monitoring and

distributed tracing.

● Cost Optimization: Leverage auto-scaling and right-sized infrastructure to reduce cloud resource

consumption and associated costs.

1.3 Research Contribution

This research contributes a detailed case study on the real-world application of DevSecOps in deploying

scalable, resilient applications. It documents:

● Tool selection strategies and pipeline configurations.

● Use of automation in infrastructure provisioning and application deployment.

● Integration of real-time security analysis.

● Performance benchmarks and operational insights.

II. ARCHITECTURE AND METHODOLOGY

2.1 Application Architecture

The application follows a three-tier architecture composed of presentation, application, and data layers:

● Presentation Tier: Developed using ReactJS, this tier provides a responsive frontend hosted on AWS

S3 and distributed globally through Amazon CloudFront CDN.

● Application Tier: Composed of Node.js-based microservices for authentication, booking, payments,

and reviews. These services are containerized using Docker and orchestrated by Kubernetes.

● Data Tier: Data is persistently stored in MongoDB Atlas (NoSQL) and Amazon RDS (relational),

allowing the separation of structured transactional data and unstructured user-generated content.

Each microservice is independently deployable and communicates through authenticated RESTful APIs with

JWT-based access control. Future iterations aim to replace REST with gRPC for performance optimization in

high-throughput scenarios.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2398

2.2 Toolchain and Technology Stack

The project employs a sophisticated toolchain to support the full DevSecOps lifecycle:

● CI/CD: GitHub Actions for event-driven workflows; Jenkins for advanced pipeline customization.

● Security Scanning: OWASP ZAP for dynamic scans, Trivy for container vulnerability checks, and

SonarQube for static code analysis.

● IaC: Terraform modules provision AWS infrastructure across dev, staging, and prod environments.

Configurations are version-controlled in Git.

● Containerization: Multi-stage Docker builds reduce image size and security attack surface.

● Orchestration: Kubernetes clusters deployed using EKS with auto-scaling policies, configured for

multi-zone fault tolerance.

● Observability: Prometheus for metric collection, Grafana for dashboards, Jaeger for traceability.

● Secret Management: AWS Secrets Manager integrated into deployment pipelines.

2.3 Deployment Methodology

Two primary deployment strategies were applied:

● Blue-Green Deployment: Used during major version upgrades to switch traffic between identical

environments without downtime.

● Canary Releases: Feature rollouts tested on a small subset of users before global deployment,

reducing the blast radius of bugs.

Automated rollback is configured in the event of failed health checks post-deployment, ensuring rapid system

recovery.

III. IMPLEMENTATION

3.1 CI/CD Pipeline Logic

The CI/CD pipeline was configured to automatically:

1. Detect code commits on main or release/* branches.

2. Trigger unit tests and static analysis via GitHub Actions.

3. Build Docker images using multi-stage Dockerfiles.

4. Scan images using Trivy and SonarQube integrations.

5. Push clean artifacts to Amazon Elastic Container Registry (ECR).

6. Deploy applications to Kubernetes clusters via ArgoCD with rollback on failure.

Security gates were placed after each phase. Pipelines failed fast if security vulnerabilities exceeded thresholds.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2399

3.2 Infrastructure Automation

Infrastructure provisioning was done using Terraform and AWS CloudFormation templates:

● Network Layer: VPC, subnets, route tables, internet gateways.

● Compute: EC2 instances and EKS clusters configured with auto-scaling.

● Storage: S3 for static content, RDS and EBS volumes for data persistence.

● Security Groups: Defined access control rules for internal services.

● IAM Policies: Role-based access controls enforced across services.

All infrastructure was stored as code and automatically validated through terraform validate and plan.

3.3 Testing and Quality Assurance

A three-level testing strategy ensured system reliability:

● Unit Testing: Validated isolated service logic using Jest for Node.js.

● Integration Testing: Validated service-to-service communication, database connections, and API

flows.

● End-to-End Testing: Cypress was used to test complete user journeys from login to booking and

payment.

● Security Testing: Each build was scanned by OWASP ZAP and Trivy. Alerts triggered on CVEs

above a defined severity.

IV. RESULTS AND DISCUSSION

4.1 Uptime & Resilience

Over a 30-day stress test period, the system maintained an average uptime of 99.97%, primarily due to

Kubernetes’ ability to automatically replace failed containers. The deployment of blue-green updates ensured

zero downtime during version upgrades.

4.2 Pipeline Efficiency

The average time to deploy a change from code commit to production was reduced to 3.4 minutes, thanks to the

automated CI/CD pipeline. Security gates introduced minimal overhead but significantly increased software

assurance.

4.3 Operational Cost

By combining auto-scaling, spot instances, and efficient container sizes, cloud usage costs were lowered by over

30% without affecting performance. Kubernetes HPA scaled pods dynamically based on CPU and memory

thresholds.

4.4 Comparative Strategy Evaluation

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2400

While blue-green deployments offered safer transitions, they consumed more cloud resources during dual-

environment runtime. Canary releases, on the other hand, proved to be more resource-efficient but required

detailed monitoring and traffic splitting.

V. CHALLENGES AND LIMITATIONS

5.1 Initial Complexity

Setting up Terraform modules and configuring CI/CD integrations required deep expertise in both cloud

platforms and DevSecOps. Onboarding new team members took time.

5.2 Toolchain Fragmentation

Integrating third-party tools with GitHub Actions, Jenkins, ArgoCD, and Kubernetes led to compatibility issues.

Custom scripts were required for data transformation and format bridging.

5.3 Ongoing Security Maintenance

New CVEs and container vulnerabilities required continuous pipeline updates and retesting to maintain

compliance. A dedicated security pipeline was added to handle dynamic policy enforcement.

VI. PERFORMANCE ANALYSIS

6.1 Uptime and System Availability

Metric Value Description

Uptime 99.97% Measured over 30 days

Downtime 12.9 min/mo Blue-green deployment switches

Auto-Heal Time 10-15 sec Kubernetes pod replacement

6.2 Pipeline Efficiency

Stage Avg. Time Tool Used

Code Integration 1.1 minutes GitHub Actions

Security Scanning 0.9 minutes OWASP ZAP, Trivy

Deployment 0.8 minutes ArgoCD

6.3 Resource Utilization

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2401

Service CPU Memory Auto-Scaled

Web Tier (Nginx) 34% 270 MB Yes

App Tier (Node.js) 47% 410 MB Yes

DB Tier (MongoDB) 56% 590 MB No

VII. FUTURE SCOPE

7.1 AI-Driven Monitoring

Incorporating anomaly detection into Prometheus could automate alerting by learning historical performance

baselines and flagging deviations.

7.2 Serverless Event Handling

Integrating AWS Lambda for notifications, report generation, and billing events can enhance cost efficiency and

enable real-time function triggers.

7.3 Chaos Engineering

By integrating tools like Gremlin or LitmusChaos, failure simulations could expose system vulnerabilities,

helping engineers proactively strengthen fault tolerance.

VIII. CONCLUSION

The Wanderlust Mega Project successfully demonstrates the transformative impact of DevSecOps in deploying

scalable, secure, and highly available cloud-native applications. Through rigorous automation, observability,

and security integration, the system achieved industry-grade performance benchmarks. Future enhancements,

including AI-based observability and chaos testing, could push the architecture further toward self-healing and

predictive scalability. The lessons learned are applicable across industries that prioritize security, speed, and

resilience.

IX. REFERENCES

1. GitHub Actions Documentation – https://docs.github.com/en/actions

2. OWASP ZAP – https://owasp.org/www-project-zap/

3. Trivy – https://aquasecurity.github.io/trivy/

4. Terraform Docs – https://developer.hashicorp.com/terraform/docs

5. Kubernetes Patterns – Manning Publications

https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://aquasecurity.github.io/trivy/
https://aquasecurity.github.io/trivy/
https://aquasecurity.github.io/trivy/
https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26261 ijariie.com 2402

6. Prometheus & Grafana – https://prometheus.io/docs/

7. ArgoCD – https://argo-cd.readthedocs.io

8. Jaeger Tracing – https://www.jaegertracing.io

9. LitmusChaos – https://litmuschaos.io

10. Gremlin – https://www.gremlin.com

https://prometheus.io/docs/
https://prometheus.io/docs/
https://prometheus.io/docs/
https://argo-cd.readthedocs.io/
https://argo-cd.readthedocs.io/
https://argo-cd.readthedocs.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://litmuschaos.io/
https://litmuschaos.io/
https://litmuschaos.io/
https://www.gremlin.com/
https://www.gremlin.com/
https://www.gremlin.com/

