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ABSTRACT 

  
Nowadays users leave numerous comments on different social networks, news portals, and forums. Some of the comments 

are toxic or abusive. Due to the number of comments, it is unfeasible to manually moderate them, so most of the systems use 

some kind of automatic discovery of toxicity using machine learning models. In this work, we performed a systematic review 

o 

The state-of-the-art in toxic comment classification using machine learning methods. 

We have studied the impact of Support vector machines (SVM), Long Short- Term Memory Networks (LSTM), Convolutional 

Neural Networks (CNN), and Multilayer Perceptron (MLP) methods, in combination with word and character level 

embeddings, on identifying toxicity in text. We evaluated our approaches on Wikipedia comments from the Kaggle Toxic 

Comments Classification Challenge dataset. Regarding character-level classification, our best results occurred when using 

a CNN model. 

 

Machine Learning Techniques for Detecting toxic Comments: An LSTM-CNN Model Evaluation 

In recent years, the detection of toxic comments has become a critical task in maintaining healthy online communities. This 

introduction outlines the evaluation of a hybrid Long Short-Term Memory (LSTM) and Convolutional Neural Network 

(CNN) model designed for this purpose. LSTMs are well-suited for capturing sequential dependencies in text, effectively 

handling the context and nuance in comment threads. Conversely, CNNs excel at identifying local patterns, such as key 

phrases and n-grams, which are often indicative of toxicity. By combining these architectures, the LSTM-CNN model 
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leverages the strengths of both to enhance the accuracy and robustness of toxic comment detection. This evaluation aims to 

compare the performance of the hybrid model against traditional approaches, highlighting its potential advantages in 

precision, recall, and overall effectiveness in real-world applications. 

 

Subtopics: - 

 
➢ Data Collection and Annotation 

• Sources of toxic comments (social media, etc.) 

• Methods for annotating comments (manual labelling, crowdsourcing, etc.) 

 

 

➢ Preprocessing Techniques 

• Text normalization (stemming, lemmatization) 

• Handling imbalanced datasets 

• Feature extraction (TF-IDF, word embeddings) 

 

 

➢ Machine Learning Approaches 

• Traditional models (Logistic Regression, SVM) 

• Deep learning models (RNN, LSTM, CNN) 

• Hybrid models (e.g., LSTM-CNN, BERT-based models) 

 

 

➢ Evaluation Metrics 

• Precision, recall, F1-score 

• Confusion matrix analysis 

• ROC-AUC score 

 

 

➢ Challenges in Toxic Comment Detection 

• Ambiguity in language (sarcasm, slang) 

• Context-dependence of toxicity 

• Dataset bias and fairness issues 

•  

 

➢ Real-world Applications and Deployment 

• Implementation in social media platforms 

• Real-time detection systems 

• User feedback and system improvement 

 
 

1. Overview of toxic comment using LSTM-CNN model. 

Toxic Comment Classifier is a competition that has been organized by Jigsaw/Conversation AI and hosted on Kaggle. The 

data set for building the classification model was acquired from the competition site and it included the training set as well 

as the test set. The steps elaborated in the workflow below will describe the entire process from Data Pre-Processing to 

Model Testing. 

 

Data Exploration, Data Pre-processing, and Feature Engineering 

Step 1: Checking for missing values. 



Vol-10 Issue-3 2024                IJARIIE-ISSN(O)-2395-4396 
    

24077  ijariie.com 2832 

First and foremost, after importing the training and test data into the pandas dataframe, I decided to check for missing values 

in the downloaded data. Using the “isnull” function on both the training and test data, I discovered that there were no missing 

records and therefore, I moved on to the next step of my project. 

Step 2: Text Normalization. 

As I was now certain that there are no missing records in my data, I decided to start with data pre-processing. Firstly, I 

decided to normalize the text data since comments from online forums usually contain inconsistent language, use of special 

characters in place of letters (e.g. @rgument), as well as the use of numbers to represent letters (e.g. n0t). To tackle such 

inconsistencies in data, I decided to use Regex. The text normalization steps that I performed are listed below:- 

• Removing Characters in between Text. 

• Removing Repeated Characters. 

• Converting data to lower-case. 

• Removing Punctuation. 

 

Step 3: Lemmatization. 

 

Since the data is now clean and consistent, it is the right time to perform Lemmatization. Lemmatization is the process of 

grouping together the different inflected forms of a word so they can be analyzed as a single item. For example, we do not 

want the Machine Learning algorithm to treat studying, studies, and study as three separate words because, in truth, they are 

not. Lemmatization helps reduce the words “studying” and “studies” to their root form, i.e. study. To implement 

Lemmatization, I imported “WordNetLemmatizer” from the “nltk” library, created a function “lemma” to perform 

Lemmatization, and applied it to the clean data that I procured from Step 2. 

 

Step 4: Stopwords Removal. 

 

Stopword removal, as we all know, is one of the most critical steps in text pre-processing for use-cases that involve text 

classification. Removing stopwords ensures that more focus is on those words that define the meaning of the text. 

i. To remove stopwords from my data, I took the help of the “spacy” library. Spacy has a list of common 

stopwords, “STOP_WORDS” that can be used to remove stopwords from any textual data. 

ii. Although the list provided by Spacy’s library is quite extensive, I decided to search for additional stopwords that 

might be unique to my dataset. 

iii. Firstly, I decided to add single-letter and two-letter words to the list of stopwords. While reading through 

random comments in my dataset, I came across instances where single-letter or two-letter words existed without 

any context, (e.g. Wow such a lovely pillow w!! or He is such a happy guy bb.) To make sure that such instances of 

single-letter or two-letter words do not affect the performance of my deep learning model, I added them to the list 

of stopwords. However, I made sure that words like me, am, as, or letters like I and a are not added to the list of 

stopwords. 

 

Step 5: Tokenization, Indexing, and Index Representation. 

 

As we all know, machine learning and deep learning models work on numerical data irrespective of the use case. Therefore, 

to train a deep-learning model using clean text data, the data must be converted into its equivalent machine-readable form. 

To achieve such a feat. we need to perform the following steps [3]: 

Tokenization — We need to break down the sentence into unique words. e.g. “I love cats and love dogs” will become [“I”, 

“love”, “cats”, “and”, “dogs”]. 

Indexing — We put the words in a dictionary-like structure and give them an index each e.g. {1: “I”,2: “love”,3: “cats”,4: 

“and”,5: “dogs”}. 

Index Representation- We could represent the sequence of words in the comments in the form of an index, and feed this 

chain of index into our deep-learning model. For e.g. [1,2,3,4,2,5]. 

Using the “Tokenizer” class from the “Keras” library, the above-mentioned steps can be easily performed. This class allows 

vectorizing a text corpus, by turning each text into either a sequence of integers (each integer being the index of a token in a 

dictionary) or into a vector where the coefficient for each token could be binary, based on word count, based on tf-idf, etc 

[4]. The code snippet below demonstrates the conversion of text data into sequence vectors. 

 

Step 6: Padding. 

 

Comments found on online forums or social media platforms are variable in length, some are one-word replies while others 

are vastly elaborated thoughts. Variable-length sentences are converted into variable-length sequence vectors and we cannot 
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pass vectors of inconsistent lengths to our deep-learning model. To circumvent this issue, we use Padding. With the help of 

padding, we can make the shorter sentences as long as the others by filling the shortfall by zeros, and on the other hand, we 

can trim the longer ones to the same length as the short ones [3]. I used the “pad_sequences” function from the “Keras” 

library and, I fixed the sentence length at 200 words and applied post padding (i.e. for shorter sentences, 0’s will be added 

at the end of the sequence vector). As soon as we are done with the padding of our sequence vectors, we can start creating 

our deep-learning models. 

 

Model Creation & Model Assessment 
 

Step 1: Split Training Data into Train-Set and Validation-Set. 

Since we have completed the data pre-processing and feature engineering part of our project, we move on to the model 

creation and model assessment part of the project. Before trying to fit a deep learning model on the training data, I 

randomly split the data into train-set and validation-set. The validation set accounts for 20% of the training data. 

 

Step 2: Import fastText’s pre-trained word embeddings. 

As mentioned earlier, in the Problem Statement, I wanted to use pre-trained word embeddings from fastText to harness the 

power of Transfer Learning. To do so, I load the fastText word embeddings into my own environment, and then, I create 

an embedding matrix by assigning the vocabulary with the pre-trained word embeddings. 

Step 3: Model Creation (LSTM). 

It is now time to choose a deep-learning model and train the model using the train-set and the validation-set. Since we are 

working on a Natural Language Processing use-case, it is ideal that we use the Long Short Term Memory model (LSTM). 

LSTM networks are similar to RNNs with one major difference that hidden layer updates are replaced by memory cells. 

This makes them better at finding and exposing long-range dependencies in data which is imperative for sentence structures 

[5]. 

i. Firstly, I imported the “Talos” library since it will help us perform hyperparameter tuning as well as model evaluation. 

Using the “Scan” function, I performed a GridSearchCV and found the best parameters that would give me the highest 

accuracy. 

ii. Next, using the best hyper-parameters, I defined the required number of layers for the LSTM model, compiled the model, 

and lastly trained the model using the train-set and validation-set. 

 

Step 4: Model Creation (LSTM-CNN). 

During the research phase of my project, I came across papers that achieved Toxic Comment Classification using a hybrid 

model (i.e. an LSTM and CNN model that worked together). Such architecture, for a deep-learning model, intrigued me. 

LSTM can effectively preserve the characteristics of historical information in long text sequences whereas CNN can extract 

the local features of the text [6]. Combining the two traditional neural network architectures will help us harness their 

combined capabilities. Therefore, I decided to implement an LSTM-CNN hybrid model as a part of my project. The goal 

was to compare the performance of both the deep-learning architectures and ascertain the best deep-learning model for my 

project. 

Similar to the process followed in Step 3, I discovered the best hyper-parameters for my hybrid model using “Talos”. Once 

the operation was completed, I evaluated the results and picked the hyperparameters which gave me the highest accuracy. 

Finally, I trained my hybrid model using the train-set and the validation-set. 

Step 5: Evaluate the Model Accuracy and Model Loss during the training phase. 

As we have completed the training of both our deep-learning models, we should now visualize their accuracy and loss 

values during the entire training process. Ideally, the loss value for any deep-learning model should decrease as the number 

of epochs increases, on the other hand, the accuracy should increase as the number of epochs increases. This gives us a 

fairly decent idea about the quality of our deep-learning model, and whether it has been appropriately trained. Trends in the 

accuracy and the loss values during every epoch can be seen in the images below. 

https://github.com/autonomio/talos


Vol-10 Issue-3 2024                IJARIIE-ISSN(O)-2395-4396 
    

24077  ijariie.com 2834 

 

 

 

 Figure1. Loss and Accuracy values for the LSTM model throughout 2 epochs. 

 

Figure 2..Loss and Accuracy values for the LSTM-CNN model over a span of 2 epochs. 
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Figure 3. toxic levels in the comments classification in train dataset 

 

 

 Figure 4. Variance with comment’s toxic category on Tableau  
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Step 6: Padding. 

Comments found on online forums or social media platforms are variable in length, some are one-word replies while others 

are vastly elaborated thoughts. Variable-length sentences are converted into variable-length sequence vectors and we 

cannot pass vectors of inconsistent lengths to our deep-learning model. To circumvent this issue, we use Padding. With the 

help of padding, we can make the shorter sentences as long as the others by filling the shortfall by zeros, and on the other 

hand, we can trim the longer ones to the same length as the short ones [3]. I used the “pad_sequences” function from the 

“Keras” library and, I fixed the sentence length at 200 words and applied post padding (i.e. for shorter sentences, 0’s will 

be added at the end of the sequence vector). As soon as we are done with the padding of our sequence vectors, we can start 

creating our deep-learning models. 

Model Creation & Model Assessment 

Step 1: Split Training Data into Train-Set and Validation-Set. 

Since we have completed the data pre-processing and feature engineering part of our project, we move on to the model 

creation and model assessment part of the project. Before trying to fit a deep learning model on the training data, I 

randomly split the data into train-set and validation-set. The validation set accounts for 20% of the training data. 

 

Step 2: Import fastText’s pre-trained word embeddings. 

As mentioned earlier, in the Problem Statement, I wanted to use pre-trained word embeddings from fastText to harness the 

power of Transfer Learning. To do so, I load the fastText word embeddings into my own environment, and then, I create 

an embedding matrix by assigning the vocabulary with the pre-trained word embeddings. 

Step 3: Model Creation (LSTM). 

It is now time to choose a deep-learning model and train the model using the train-set and the validation-set. Since we are 

working on a Natural Language Processing use-case, it is ideal that we use the Long Short Term Memory model (LSTM). 

LSTM networks are similar to RNNs with one major difference that hidden layer updates are replaced by memory cells. 

This makes them better at finding and exposing long-range dependencies in data which is imperative for sentence structures 

[5]. 

i. Firstly, I imported the “Talos” library since it will help us perform hyperparameter tuning as well as model evaluation. 

Using the “Scan” function, I performed a GridSearchCV and found the best parameters that would give me the highest 

accuracy. 

 

ii. Next, using the best hyper-parameters, I defined the required number of layers for the LSTM model, compiled the model, 

and lastly trained the model using the train-set and validation-set. 

Step 4: Model Creation (LSTM-CNN). 

During the research phase of my project, I came across papers that achieved Toxic Comment Classification using a hybrid 

model (i.e. an LSTM and CNN model that worked together). Such architecture, for a deep-learning model, intrigued me. 

LSTM can effectively preserve the characteristics of historical information in long text sequences whereas CNN can extract 

the local features of the text [6]. Combining the two traditional neural network architectures will help us harness their 

combined capabilities. Therefore, I decided to implement an LSTM-CNN hybrid model as a part of my project. The goal 

was to compare the performance of both the deep-learning architectures and ascertain the best deep-learning model for my 

project. 

Similar to the process followed in Step 3, I discovered the best hyper-parameters for my hybrid model using “Talos”. Once 

the operation was completed, I evaluated the results and picked the hyperparameters which gave me the highest accuracy. 

Finally, I trained my hybrid model using the train-set and the validation-set. 

 

https://github.com/autonomio/talos
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Common symptoms include blurred vision, floaters, dark or empty areas in the vision, and vision loss. Risk factors include 

poor blood sugar control, duration of diabetes, high blood pressure, and high cholesterol. 

Step 5: Evaluate the Model Accuracy and Model Loss during the training phase. 

As we have completed the training of both our deep-learning models, we should now visualize their accuracy and loss 

values during the entire training process. Ideally, the loss value for any deep-learning model should decrease as the number 

of epochs increases, on the other hand, the accuracy should increase as the number of epochs increases. This gives us a 

fairly decent idea about the quality of our deep-learning model, and whether it has been appropriately trained. Trends in the 

accuracy and the loss values during every epoch can be seen in the images below. 

 

Loss and Accuracy values for the LSTM model over a span of 2 epochs. (Image by author) 

 

Loss and Accuracy values for the LSTM-CNN model over a span of 2 epochs. (Image by author) 

Step 6: Calculating Model Accuracy using Test-set 

Evaluating the model based on accuracy and loss values gave me promising results. It gave me the confidence to assess the 

performance of my deep learning models using the test set. As mentioned earlier in this blog, the test-set was procured 

from Kaggle and it was passed through the same data pre-processing and feature engineering steps as the training data. 

Since I now have the processed test data available with me, I used the “predict” function to generate outputs for the inputs 

present in the test data. 
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As soon as the above process was completed for both my deep learning models, I uploaded the respective “.csv” output 

files to the Kaggle Competition and submitted them to generate the final accuracy scores. The maximum accuracy scores 

for both my deep learning models can be seen in the image below. 

 

Comparison of Accuracy scores for the traditional LSTM Model and the hybrid LSTM-CNN Model. (Image by author) 

 

 

Conclusion 

After evaluating the results procured during the training phase of my project and the results that I received from the 

competition website, I can claim that the traditional LSTM Model performs better than the hybrid LSTM-CNN 

Model. The hybrid model loses marginally to the traditional deep-learning model which states that the traditional LSTM 

model is the right choice for the Toxic Comment Classification use-case. 
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