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ABSTRACT 

 

In electromagnetics, a dispersive material is a material with electromagnetic parameters dependent on frequency. In 

this paper, the implementation of simulations of medium made up of plasma is studied. For this, the FDTD (Finite 

Difference Time Domain) method, using the DB-FDTD formulation is used. In order to modeling the plasma, the 

Drude model is taken into consideration in this work. The material equations, relating flux densities to fields, are 

described in the frequency domain and therefore must be rewritten in the time domain, for use in an FDTD 

formulation. In order to switch material equation’s from the frequency domain to the discretized time domain, the Z 

transform is used. The simulation implements an FDTD grid terminated by loss layers for ABC (Absorbing 

Boundary Condition), and uses as source a plane wave composed with a modulated Gaussian.    

Keyword: Plasma, Drude, DB-FDTD, Z transform, Loss layers, Plane Wave, modulated Gaussian 

 

1. INTRODUCTION  

For many problems, results with acceptable accuracy are obtained with the FDTD method assuming that the material 

parameters are constants. However, constant material parameters are inherently an approximation. A non-unity, 

scalar, constant relative permittivity is equivalent to assuming that the charge polarization in a material is 

instantaneous and perfectly proportioned to the applied electric field. Usually for materials such as plasma, the 

permittivity is dependent of the frequency of the wave traveling through the material. When the permittivity or the 

permeability of an material are functions of frequency, the material is said to be dispersive. This paper focuses on 

the modeling of dispersive materials, and more particularly plasma, with the FDTD method.  

For the numerical implementation, the DB-FDTD formulation is used. And for modeling dispersive medium, the 

Drude model is used. This model presents the electrical and magnetic susceptibilities as a function of the frequency. 

2. DISPERSIVE MATERIALS AND CONSTITUTIVE EQUATIONS  

2.1. Electrical and magnetic susceptibilities 

In non-dispersive materials, the electric and magnetic flux densities are related to electric and magnetic fields via the 

material equations (Eq.1), whose electromagnetic parameters are given in Eq.2 [1] [2]. 
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𝐷⃗⃗ = 𝜀𝐸⃗         (1.a) 

𝐵⃗ = 𝜇𝐻⃗⃗         (1.b) 

where  

𝜀 = 𝜀0(𝜀∞ + 𝜒𝑒)       (2.a) 

𝜇 = 𝜇0(𝜀∞ + 𝜒𝑚)      (2.b) 

In Eq.2, 𝜒𝑒  and 𝜒𝑚are the electrical and magnetic susceptibilities, and 𝜀0 and 𝜇0are respectively the permittivity and 

the permeability of the vacuum. In dispersive materials, permittivity and permeability are frequency dependent. The 

material equations connecting the flux densities and the fields are thus rewritten in Eq.3. The electromagnetic 

parameters, dependent on the frequency, are expressed in the forms given in Eq. 4 [1][3]. 

𝐷̂(𝜔) = 𝜀̂(𝜔)𝐸̂(𝜔)       (3.a) 

𝐵̂(𝜔) = 𝜇̂(𝜔)𝐻̂(𝜔)       (3.b) 

where 

𝜀̂(𝜔) = 𝜀0[𝜀∞ + 𝜒̂𝑒(𝜔)]       (4.a) 

𝜇̂(𝜔) = 𝜇0[𝜇∞ + 𝜒̂𝑚(𝜔)]       (4.b) 

In Eq. 4, 𝜀∞ and 𝜇∞ are respectively the permittivity and the permeability relating to the optical frequencies. 

2.2. Drude model 

The electrical and magnetic susceptibilities for the Drude model are given in Eq. 5 [3]. 

𝜒̂𝑒,𝐷𝑟(𝜔) =
𝜔𝑝𝑒

2

𝑗𝜈𝑒𝜔−𝜔2       (5.a) 

𝜒̂𝑚,𝐷𝑟(𝜔) =
𝜔𝑝𝑚

2

𝑗𝜈𝑚𝜔−𝜔2       (5.b) 

𝜔𝑝 is the plasma frequency and 𝜈 is the electron collision frequency. In the Drude model, expenses are expected to 

move under the influence of the electric field, and they also undergo a damping force (Eq.6). 

𝜕2

𝜕𝑡2 𝑃 = 𝜀0𝜔𝑝𝑒
2 𝐸(𝑡) − 𝛤𝑒

𝜕

𝜕𝑡
𝑃     (6) 

The model is called the plasma model. For EM waves, the plasma appears as a high pass filter. At a relatively low 

frequencies (frequencies lower than plasma frequency), waves are reflected. At a relatively high frequencies 

(frequencies higher than plasma frequency), the medium becomes transparent to these high frequency waves. More 

common forms of plasma susceptibilities are given in Eq. 7, where 𝜈 (𝑟𝑎𝑑. 𝑠−1) represents the collision frequency 

of electrons. 

𝜒̂𝑒,𝑃(𝜔) =
𝜔𝑝𝑒

2

𝑗ν𝑒𝜔−𝜔2       (7.a) 

𝜒̂𝑚,𝑃(𝜔) =
𝜔𝑝𝑚

2

𝑗𝜈𝑚𝜔−𝜔2       (7.b) 
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3. FDTD IMPLEMENTATION OF PLASMA WITH GRID TERMINATED WITH LOSSY LAYERS 

3.1. Update equations for flux densities 

The implementation of a dispersive medium with the FDTD method is facilitated by using the DB-FDTD 

formulation. The use of loss layers can be done separately from the definition of the material (which here is a 

dispersive material). The electric flux density and magnetic flux density updating equations, for a DB-FDTD 

formulation with a grid terminated with loss layers, are given in Eq.8 and Eq.9. Eq.10 represents the calculation of 

the loss factors following the direction defined by 𝑑 (𝑑 = 𝑖, 𝑗, 𝑘) [1][4][5].  

𝐷𝑥
𝑛+1(𝑖, 𝑗, 𝑘) = 𝐶𝑑𝑑(𝑖, 𝑗, 𝑘)𝐷𝑥

𝑛(𝑖, 𝑗, 𝑘)        

+𝐶𝑑ℎ(𝑖, 𝑗, 𝑘) {(
𝐻𝑧

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑧

𝑛+
1
2(𝑖,𝑗−1,𝑘)

∆𝑦
) − (

𝐻𝑦

𝑛+
1
2(𝑖,𝑗,𝑘+1)−𝐻𝑦

𝑛+
1
2(𝑖,𝑗,𝑘−1)

∆𝑥
)}  (8.a) 

𝐷𝑦
𝑛+1(𝑖, 𝑗 + 1, 𝑘) = 𝐶𝑑𝑑(𝑖, 𝑗 + 1, 𝑘)𝐷𝑦

𝑛(𝑖, 𝑗 + 1, 𝑘)        

+𝐶𝑑ℎ(𝑖, 𝑗 + 1, 𝑘) {(
𝐻𝑥

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑥

𝑛+
1
2(𝑖,𝑗,𝑘−1)

∆𝑧
) − (

𝐻𝑧

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑧

𝑛+
1
2(𝑖−1,𝑗,𝑘)

∆𝑥
)} (8.b) 

𝐷𝑧
𝑛+1(𝑖, 𝑗, 𝑘 + 1) = 𝐶𝑑𝑑(𝑖, 𝑗, 𝑘 + 1)𝐷𝑧

𝑛(𝑖, 𝑗, 𝑘 + 1)       

+𝐶𝑑ℎ(𝑖, 𝑗, 𝑘 + 1) {(
𝐻𝑦

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑦

𝑛+
1
2(𝑖−1,𝑗,𝑘)

∆𝑥
) − (

𝐻𝑥

𝑛+
1
2(𝑖,𝑗,𝑘)−𝐻𝑥

𝑛+
1
2(𝑖,𝑗−1,𝑘)

∆𝑦
)} (8.c) 

𝐶𝑑𝑑(𝑖, 𝑗, 𝑘) =
1−𝑝𝑒(𝑖,𝑗𝑘)

1+𝑝𝑒(𝑖,𝑗𝑘)
     ;  𝐶𝑑ℎ(𝑖, 𝑗, 𝑘) =

∆𝑡

1+𝑝𝑒(𝑖,𝑗𝑘)
     (8.d) 

  

𝐵𝑥

𝑛+
1

2(𝑖, 𝑗, 𝑘) = 𝐶𝑏𝑏(𝑖, 𝑗, 𝑘)𝐵𝑥

𝑛−
1

2(𝑖, 𝑗, 𝑘)        

+𝐶𝑏𝑒(𝑖, 𝑗, 𝑘) {(
𝐸𝑦

𝑛(𝑖,𝑗,𝑘+1)−𝐸𝑦
𝑛(𝑖,𝑗,𝑘)

∆𝑧
) − (

𝐸𝑧
𝑛(𝑖,𝑗+1,𝑘)−𝐸𝑧

𝑛(𝑖,𝑗,𝑘)

∆𝑦
)}   (9.a) 

𝐵𝑦

𝑛+
1

2(𝑖, 𝑗, 𝑘) = 𝐶𝑏𝑏(𝑖, 𝑗, 𝑘)𝐵𝑦

𝑛−
1

2(𝑖, 𝑗, 𝑘)        

+𝐶𝑏𝑒(𝑖, 𝑗, 𝑘) {(
𝐸𝑧

𝑛(𝑖+1,𝑗,𝑘)−𝐸𝑧
𝑛(𝑖,𝑗,𝑘)

∆𝑥
) − (

𝐸𝑥
𝑛(𝑖,𝑗,𝑘+1)−𝐸𝑥

𝑛(𝑖,𝑗,𝑘)

∆𝑧
)}   (9.b) 

𝐵𝑧

𝑛+
1

2(𝑖, 𝑗, 𝑘) = 𝐶𝑏𝑏(𝑖, 𝑗, 𝑘)𝐵𝑧

𝑛−
1

2(𝑖, 𝑗, 𝑘)        

+𝐶𝑏𝑒(𝑖, 𝑗, 𝑘) {(
𝐸𝑥

𝑛(𝑖,𝑗+1,𝑘)−𝐸𝑥
𝑛(𝑖,𝑗,𝑘)

∆𝑦
) − (

𝐸𝑦
𝑛(𝑖+1,𝑗,𝑘)−𝐸𝑦

𝑛(𝑖,𝑗,𝑘)

∆𝑥
)}   (9.c) 

𝐶𝑏𝑏(𝑖, 𝑗, 𝑘) =
1−𝑝𝑚(𝑖,𝑗,𝑘)

1+𝑝𝑚(𝑖,𝑗,𝑘)
         ;         𝐶𝑏𝑒(𝑖, 𝑗, 𝑘) =

∆𝑡

1+𝑝𝑚(𝑖,𝑗,𝑘)
     (9.d) 
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𝑝𝑒(𝑑) = 𝑝𝑚(𝑑) = 0.333 (
𝑑

𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒
)
3

;        

𝑑 = [1, 𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒], 𝑒𝑡 𝑑 = [𝑡𝑎𝑖𝑙𝑙𝑒𝑔𝑟𝑖𝑙𝑙𝑒,𝑑 − 𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒, 𝑡𝑎𝑖𝑙𝑙𝑒𝑔𝑟𝑖𝑙𝑙𝑒,𝑑]            (10) 

3.2. Field FDTD formulation for plasma 

In order to update the electric and magnetic fields, the material equations relating the flux densities and the fields are 

given in Eq. 11. 

𝐷̂(𝜔) = 𝜀̂(𝜔). 𝐸̂(𝜔)        (11.a) 

𝐵̂(𝜔) = 𝜇̂(𝜔)𝐻̂(𝜔)                      (11.b) 

3.2.1. Electric field update 

The frequency dependent permittivity of the plasma is given by Eq. 12. By applying the simple element 

decomposition to Eq.12, Eq.13 is obtained [3]. 

𝜀̂(𝜔) = 𝜀0 (𝜀∞ +
𝜔𝑝𝑒

2

𝜔(𝑗𝜈𝑒−𝜔)
)       (12) 

𝜀̂(𝜔) = 𝜀0 (𝜀∞ +
𝜔𝑝𝑒

2

𝜈𝑒

1

𝑗𝜔
−

𝜔𝑝𝑒
2

𝜈𝑒

1

𝜈𝑒+𝑗𝜔
)      (13) 

Eq. 13 represents the permittivity used for the following. In order to go from the frequency domain to the discretized 

time domain, the Z transform method will be used. The multiplication in the frequency domain corresponds to 

another multiplication in the Z domain. Applying the Z transformation technique, for a dispersive material, to the 

permittivity (Eq.13) gives Eq.14. And the Z transform of the material equation of the electric flux density (Eq.11.a) 

is given to Eq.15 [3]. 

𝜀̂(𝑍) =
𝜀0𝜀∞

Δ𝑡
+

𝜀0𝜔𝑝𝑒
2

𝜈𝑒

1

1−𝑍−1 −
𝜀0𝜔𝑝𝑒

2

𝜈𝑒

1

1−𝑒−𝜈𝑒Δ𝑡𝑍−1     (14) 

  𝐷̂(𝑍) = 𝜀̂(𝑍). 𝐸̂(𝑍). Δ𝑡        (15) 

By inserting Eq.14 into Eq.15, Eq.16 is obtained. Eq.16 can be rewritten like Eq.17 in order to find a solution to 

𝐸̂(𝑍). An auxiliary term 𝐼𝑒  (Eq.18) is defined in order to reformulate Eq.17. Thus, the resolution of the electric field 

in the Z domain is given in Eq. 19. 

𝐷̂(𝑍) = [
𝜀0𝜀∞

Δ𝑡
+

𝜀0𝜔𝑝𝑒
2

𝜈𝑒

1

1−𝑍−1 −
𝜀0𝜔𝑝𝑒

2

𝜈𝑒

1

1−𝑒−𝜈𝑒𝛥𝑡𝑍−1] 𝐸̂(𝑍). 𝛥𝑡    (16) 

𝐷̂(𝑍) = 𝜀0𝜀∞𝐸̂(𝑍) +
𝜀0𝜔𝑝𝑒

2 Δ𝑡

𝜈𝑒
[

(1−𝑒−𝜈𝑒𝛥𝑡)𝑍−1

1−(1+𝑒−𝜈𝑒𝛥𝑡)𝑍−1+𝑒−𝜈𝑒𝛥𝑡𝑍−2] 𝐸̂(𝑍)   (17) 

𝐼𝑒(𝑍) =
𝜀0𝜔𝑝𝑒

2 𝛥𝑡

𝜈𝑒
[

(1−𝑒−𝜈𝑒𝛥𝑡)

1−(1+𝑒−𝜈𝑒𝛥𝑡)𝑍−1+𝑒−𝜈𝑒𝛥𝑡𝑍−2] 𝐸̂(𝑍)      (18) 

𝐸̂(𝑍) =
1

𝜀0𝜀∞
[𝐷̂(𝑍) − 𝑍−1𝐼𝑒(𝑍)]      (19.a) 

𝐼𝑒(𝑍) = (1 + 𝑒−𝜈𝑒𝛥𝑡)𝑍−1𝐼𝑒(𝑍) − 𝑒−𝜈𝑒𝛥𝑡𝑍−2𝐼𝑒(𝑍) +
𝜀0𝜔𝑝𝑒

2 𝛥𝑡

𝜈𝑒
(1 − 𝑒−𝜈𝑒𝛥𝑡)𝐸̂(𝑍)  (19.b) 
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Therefore, the formulation in the discretized time domain of the electric field, for an FDTD formulation, is given in 

Eq. 20.  

𝐸𝑛 =
1

𝜀0𝜀∞
(𝐷𝑛 − 𝐼𝑒

𝑛−1)       (20.a) 

𝐼𝑒
𝑛 = (1 + 𝑒−𝜈𝑒𝛥𝑡)𝐼𝑒

𝑛−1 − 𝑒−𝜈𝑒𝛥𝑡𝐼𝑒
𝑛−2 +

𝜀0𝜔𝑝𝑒
2 𝛥𝑡

𝜈𝑒
(1 − 𝑒−𝜈𝑒𝛥𝑡)𝐸𝑛  (20.b) 

3.2.2. Magnetic field update 

The permeability for a Drude material is given in Eq. 21. Using the same approach as for obtaining the electric field 

update equations, the magnetic field update equations are given in Eq. 22. 

𝜇̂(𝜔) = 𝜇0 (𝜇∞ +
𝜔𝑝𝑚

2

𝜔(𝑗𝜈𝑚−𝜔)
)          (21) 

𝐻𝑛 =
1

𝜇0𝜇∞
(𝐵𝑛 − 𝐼𝑚

𝑛−1)       (22.a) 

𝐼𝑚
𝑛 = (1 + 𝑒−𝜈𝑚𝛥𝑡)𝐼𝑚

𝑛−1 − 𝑒−𝜈𝑚𝛥𝑡𝐼𝑚
𝑛−2 +

𝜇0𝜔𝑝𝑚
2 𝛥𝑡

𝜈𝑚
(1 − 𝑒−𝜈𝑚𝛥𝑡)𝐻𝑛   (22.b) 

3.3. FDTD algorithm for a Drude material 

The FDTD algorithm for a Drude material is similar to the DB-FDTD algorithm which is a formulation 

implemented using the electric and magnetic flux densities. The only changes made are the definitions of the 

multiplication coefficients of the auxiliary terms (𝐼𝑒  and 𝐼𝑚). The update coefficients of the auxiliary terms are 

dependents of the values of the collisions frequencies of the electrons (𝜈𝑒(𝑖, 𝑗, 𝑘), 𝜈𝑚(𝑖, 𝑗, 𝑘)) defined for each node 

of the grid [5]. 

For the vacuum, a zero value should be chosen for the collision frequency of the electrons. But referring to Eq.20.b, 

the update coefficient of the auxiliary term  𝐼𝑒  contains a division by 𝜈𝑒, which will give an infinite value for 𝜈𝑒 = 0. 

Thus in order to circumvent this problem a very low value will be chosen for the collision frequency of the electrons 

(𝜈𝑒 = 10−4 𝐻𝑧). 

4. FDTD SIMULATION OF NON-MAGNETIZED PLASMA 

4.1. Properties of non-magnetized plasma 

The permittivity and permeability, dependent of the frequency, of the plasma are given in Eq. 23, where 𝜀∞ = 1 and 

𝜇∞ = 1 [3]. 

𝜀̂(𝜔) = 𝜀0𝜀𝑟̂(𝜔) = 𝜀0 (1 +
𝜔𝑝

2

𝜔(𝑗𝜈𝑒−𝜔)
)     (23.a) 

𝜇̂(𝜔) = 𝜇0𝜇̂𝑟(𝜔) = 𝜇0 (1 +
𝜔𝑝𝑚

2

𝜔(𝑗𝜈𝑚−𝜔)
)     (23.b) 

The simulation consists of a wave propagating in free space and striking the plasma. The simulation uses the 

properties of copper where the electron frequency collision is 𝜈𝑒 = 22.25 𝑇𝐻𝑧, and the plasma frequency is 

𝑓𝑝𝑒 = 2 127.83 𝑇𝐻𝑧 [6].  
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The conductivity of the plasma can be defined from the equation of the relative permittivity (Eq.23.a), by comparing 

this equation with the expression of the relative permittivity of a conductive medium (Eq.24.a). The expression of 

the conductivity, depending on the frequency, is therefore obtained from Eq. 24.b. 

𝜀𝑟̂(𝜔) = 1 − 𝑗
𝜎̂(𝜔)

𝜔𝜀0
       (24.a) 

𝜎̂(𝜔) =
𝜀0𝜔𝑝

2

𝜈𝑒+𝑗𝜔
        (24.b) 

Using Eq. 24, Fig. 1 illustrate the permittivity and conductivity of the plasma using the properties of copper. For 

frequencies lower than that of plasma, the medium is reflective due to its high conductivity. The higher is the 

frequency of the incident wave in the medium, more is the conductivity of the plasma decreases, so the medium 

formed by the plasma becomes transparent. 

 

Fig.1: Real parts of the frequency dependent permittivity and conductivity for copper plasma 

4.2. Simulations of a plane wave hitting a cylinder of plasma 

The medium composed of plasma is a cylinder of radius 𝑅 = 20 × ∆𝑥, of center 𝑐 of coordinate (75,50). The grid is 

defined with a dimension of 150 ×  100 𝑛𝑜𝑑𝑒𝑠, and is finished with absorbent layers with 15 𝑛𝑜𝑑𝑒𝑠 thick, at each 

of its limits. The number of points per wavelength is defined by 𝑁𝜆 = 20. The source is a modulated Gaussian, 

introduced by TFSF limit at node 15 of the grid.  

The simulation is done in the TM mode where the components of the fields involved are 𝐸𝑍 for the electric field and 

𝐻𝑥  and 𝐻𝑦  for the magnetic field. It’s the same case for the components of the flux densities, 𝐷𝑧 , 𝐵𝑥 and 𝐵𝑦 which 

are those involved in the simulation. 

Fig.2, Fig.3 and Fig.4 represent the snapshots of propagation of the modulated Gaussian wave with the frequencies  

1000 𝑇𝐻𝑧, 5000 𝑇𝐻𝑧 and 2127.83 𝑇ℎ𝑧, respectively. Wave’s incident at the edges of the grid are not affected by 

the implementation of the TFSF limit, and therefore can go outside this limit to be absorbed by the absorbent layers 

at the limits of the FDTD grid. 
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Fig.2: Modulated Gaussian with frequency 1000 THz striking a plasma cylinder 

 

Fig.3: Modulated Gaussian with frequency 5 000 THz striking a plasma cylinder 
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Fig.4: Modulated Gaussian with frequency 2 127.83 THz striking a plasma cylinder 

5. CONCLUSION 

The FDTD method makes possible the modeling of a dispersive medium such as, in the case of this work, plasma. 

The numerical results indicate that the behavior of the model corresponds to the physical behavior of the plasma. 

The FDTD method being a method working in the time domain, in order to simulate plasma it is necessary to pass 

the material equations from the frequency domain to the time domain. For this, the frequency domain has been 

passed into the discretized frequency domain using the Z transform. Using the inverse Z transform, the equations 

move from the Z domain to the discretized time domain. Processing of the medium was facilitated by the use of the 

DB-FDTD formulation. Insertion of dispersive material into the medium does not affect TFSF (for plane wave 

simulation) and ABC (for grid termination) formulations by using DB-FDTD formulation. 
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