
Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

19759 ijariie.com 2253

Distributed computing algorithm with high

performance for big data

Randriamampiandry Rudy – Rakotomanana René – Randimbindrainibe Falimanana

Ecole Supérieure Polytechnique Antananarivo (ESPA) - Université d’Antananarivo

BP 1500, Ankatso – Antananarivo 101 – Madagascar

1
 rudrandria@gmail.com,

2
 reneheli@yahoo.fr,

3
 falimanana@mail.ru

Abstract

Many fields of science are now facing a deluge of data. One of the proposed approaches to enable the processing

of such volumes is the MapReduce programming paradigm introduced by Google. This very simple execution

scheme consists of two phases, map and reduce between which takes place a phase of massive data exchange

between the machines executing the application. In this article, we propose a linear system defining a

partitioning of the data to be processed and a dynamic transfer scheduling algorithm in order to optimize this

intermediate phase.

Keywords

MapReduce, distributed algorithm, distributed applications, big data

1.Introduction

Data is growing at an explosive rate, entering the enterprise from different domains and in a myriad of formats.

Social media, sensor data, spatial coordinates, and external data resource providers are just a few of the new data

vectors businesses now need to tackle. Big Data is a set of data of such Volume, Velocity and Variety that it

cannot be processed in traditional relational database management systems (RDBMS), Veracity is also an

essential element of Big Data, it refers to the reliability of the data and the last element is the Value, it refers to

the fact that each data must bring added value to the company.

Meeting the need for big data management requires fundamental changes in the architecture of data management

systems. Among them are the highly distributed workflow processing systems that are at the heart of managing

massive volumes of data.

This data can be an input to an application or an intermediate output that needs to be stored and managed. Some

such applications include high-performance scientific data processing techniques and real-time streaming

applications. These applications are subject to a series of calculation phases. Workflow Frameworks integrate

and coordinate multiple tasks that may contain multiple collaborative tasks. Some of these tasks are executed

sequentially but others can be executed in parallel on a distributed platform. A large amount of data is generated

daily from these workflow processing systems which are extremely valuable with a wide diversity of types, it

becomes difficult to process and store. Other applications process a massive data workflow using the MapReduce

paradigm adopted and integrated by large companies like Google, Facebook, Amazon and LinkedIn. Such an

application ecosystem requires a flexible composition of workflow tasks supporting different processing phases.

In this article, we identify the limitations of the algorithm proposed by Berlinska and Drozdowski [1] and

propose an original algorithm for scheduling data transfers during the shuffle phase of a MapReduce application.

The main objectives of this algorithm are to guarantee the non-congestion of the interconnection network, to

limit the inactivity times of the computing nodes during this phase of communication, and finally to minimize

the completion time of the application.

The remainder of this article is organized as follows. Section 2 presents various previous works related to this

issue. In section 3 we detail the application and platform models that we used to design scheduling and

partitioning algorithms optimizing data transfers during the shuffle phase. Finally, we will conclude this article

and present our future work in section 5.

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

19759 ijariie.com 2254

2.Related works

Many works have focused on the problem of the cost of data transfers within MapReduce applications. Most of

them deal with data locality during the mapping phase. One of the proposed algorithms [8] improves this locality

by introducing a delay before migrating a task to another node, if the preferred node is not available. The BAR

algorithm [4] aims to approach the optimal data distribution given an initial configuration that will be

dynamically adapted.

LEEN [3] is an intermediate key partitioning algorithm that aims to balance the duration of reduce while trying

to reduce the bandwidth consumption during the shuffle. This algorithm is based on statistics of frequencies of

appearance of intermediate keys in an attempt to create balanced partitions and optimize data transfers.

The HMPR algorithm [5] proposes a pre-shuffling which tends to reduce the quantity of data to be transferred as

well as the number of transfers. For this, it predicts the partition in which the data will be generated at the output

of the map and has the piece of data processed by the node which will execute the reduce of this partition if

possible.

The Ussop execution environment [6], targeting computing grids, adapts the amount of data to be processed by

each map according to the computing power of the machine that runs it. In addition, this tool tends to reduce

intermediate data transfers by locally executing the reduce on the machine that generated the most intermediate

keys.

A MapReduce application can be considered as a set of divisible tasks since the data to be processed can be

distributed indifferently between map instances. It is therefore possible to apply results from the theory of

divisible tasks [7] to this type of application. This is the approach that was followed by Berlinska and

Drozdowski [1]. In this article, the authors consider an execution environment whose number of computing

nodes is greater than the number of communications that can take place simultaneously without causing

contention. To avoid the appearance of this phenomenon, they propose to model the execution of a MapReduce

application by a linear program which generates a distribution of the data and a static scheduling by phases of the

communications. If this approach is interesting, the use of a linear program makes it inapplicable for instances

involving more than a few hundred maps because the resolution time can sometimes exceed several minutes.

Also, sometimes the linear program solver fails for some instances. The scheduling by phases induces, moreover,

a large number of inactivity times on the machines and the network during the shuffle. In the following section,

we propose original solutions to these problems in a similar framework of use.

3.Contribution

3.1 Models

The platform and application models used in this article are similar to those used by Berlinska and Drozdowski

[1] who, in particular, expressed throughputs in seconds per byte so as to avoid splits in their linear programs.

We use these units here so as to remain consistent with their work. We therefore consider a cluster of machines

interconnected by a single switch. The network thus formed is therefore star-shaped. The links connecting the

machines to the switch are homogeneous, without latency and with speed 𝐶 expressed in seconds per byte. The

main factor limiting the performance of a MapReduce application is the capacity of the switch. We consider that

this is much lower than the sum of the bandwidths of the links connecting each machine to the switch.

For simplicity, we define the switch throughput as a multiple of the link throughput: 𝜎 = 𝐶/𝑙 . In other words,

the switch is able to serve 𝑙 communications simultaneously without inducing contention. Beyond that, it

becomes a bottleneck and the performance of all communications in progress is degraded. Finally, the processing

capacity of the machines is 𝐴𝑖 seconds per byte.

A MapReduce application is mainly represented by the amount of data 𝛼𝑖 to be processed by each map. The total

amount of data to be processed is called 𝑉, and is equal to the sum of the 𝛼𝑖. We also define 𝛾 as being the ratio

between the amount of data passed as a parameter of a map and the volume of intermediate data produced.

During the shuffle phase, each map will therefore have to distribute 𝛾 × 𝛼𝑖 bytes between different reduce tasks.

Finally, our model introduces a delay when starting map tasks. Each node is started sequentially with a delay

𝑆 between each start. This can be due, for example, to the loading time of the application code on the nodes. For

the sake of simplicity, we consider that each node executes only one mapper or reducer process.

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

19759 ijariie.com 2255

3.2 Berlinska and Drozdowski's approach

In their article [1], Berlinska and Drozdowski attempt a global optimization of partitioning and ordering. In order

to avoid sharing the bandwidth of the links and to avoid contention, they opt for a phased arrangement of

simultaneous and ordered transfers. The order relation between transfers can be defined as follows.

𝑠𝑡𝑎𝑟𝑡(𝑖; 𝑗) > 𝑒𝑛𝑑(𝑖; 𝑗 − 1) 𝑓𝑜𝑟 𝑖 ∈ 1 … 𝑚 ; 𝑗 ∈ 2 … 𝑟 (1)

𝑠𝑡𝑎𝑟𝑡(𝑖; 𝑗) > 𝑒𝑛𝑑(𝑖 − 1; 𝑗) 𝑓𝑜𝑟 𝑖 ∈ 1 … 𝑚; 𝑗 ∈ 2 … 𝑟 (2)

With 𝑠𝑡𝑎𝑟𝑡(𝑎; 𝑏) and 𝑒𝑛𝑑(𝑎; 𝑏) giving respectively the start and end dates of the transfer from node a to node

b, and m and r represent respectively the number of nodes executing map tasks and tasks reduce.

Each map process therefore transfers its data first to reduce process 1, then to reduce 2, etc. Each map process

must wait for the previous map process to finish its transfer to reduce 𝑗 to begin its transfer to reduce 𝑗 itself.

𝑖𝑡𝑣(𝑖, 𝑗) = (⌈
𝑗

𝑙
⌉ − 1) 𝑚 + 𝑖(𝑗 − 1) 𝑚𝑜𝑑 𝑙

𝑓𝑜𝑟 𝑖 ∈ 1 … 𝑚 ; 𝑗 ∈ 2 … 𝑟 (3)

𝑣𝑡𝑖(𝑖) = 𝑎|𝑖𝑡𝑣(𝑎, 𝑏) = 𝑖 𝑏 ∈ 1 … 𝑟 (4)

Equation (3) defines the function itv which gives the number of the time interval during which mapper 𝑖 will

transfer to reducer 𝑗. Equation (4) defines 𝑣𝑡𝑖 as the reciprocal application of 𝑖𝑡𝑣. For a given interval 𝑖, it

matches the set of mappers that will transfer during that interval. Finally 𝑖𝑡𝑣(𝑟; 𝑚) corresponds to the last

transfer that will be performed.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑖𝑡𝑣(𝑚;𝑟)+1 (5)

𝑖𝑆 + 𝐴𝑖𝛼𝑖 = 𝑡𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑖𝑡𝑣(𝑚, 𝑟), 𝑘 ∈ 𝑣𝑡𝑖(𝑖) (6)
𝛾𝐶

𝑟
𝛼𝑘 ≤ 𝑡𝑖+1 − 𝑡𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑖𝑡𝑣(𝑚, 𝑟), 𝑘 ∈ 𝑣𝑡𝑖(𝑖)

(7)

∑ 𝛼𝑖

𝑛

𝑖=1

= 𝑉
(8)

The above linear program (5)– (8) attempts to minimize the end date of the last transfer. Constraint (6) causes

the first transfer to begin when the computation ends. Inequality (7) indicates that the size of an interval must be

large enough to fit all the expected transfers into it. And finally the sum (8) ensures that we process all the data.

3.3 Partitionning

the first transfer of a mapper 𝑖 ends when the calculation of the mapper 𝑖 + 1 also ends, in other words:

𝑖𝑆 + 𝛼𝑖𝐴𝑖 +
𝛼𝑖𝛾𝐶

𝑟
= (𝑖 + 1)𝑆 + 𝛼𝑖+1𝐴𝑖+1

(9)

This is verified whenever 𝛼𝑖 < 𝛼𝑖+1. Moreover, when the platform is homogeneous (all 𝐴𝑖 are equal), then

𝛼𝑖 < 𝛼𝑖+1 is equivalent to:

𝑆 × 𝑟 × 𝑚 < 𝛾 × 𝑉 × 𝐶 (9)

However, the start-up time S (of the order of a few seconds) is generally much lower than the transfer time of all

the data to be processed (of the order of a terabyte). Under these conditions, we therefore propose to calculate the

partitioning by the following linear system.

𝑖𝑆 + 𝛼𝑖𝐴𝑖 +
𝛼𝑖𝛾𝐶

𝑟
= (𝑖 + 1)𝑆 + 𝛼𝑖+1𝐴𝑖+1

𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 − 1 (11)

∑ 𝛼𝑖

𝑛

𝑖=1

= 𝑉
 (12)

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

19759 ijariie.com 2256

This linear system can be solved in 𝑂(𝑚) time and 𝑂(𝑚) space. Experience shows that this linear system

calculates 𝛼𝑖 similar to the linear program (5) – (8) except for rounding errors.

3.4 Scheduler

In the chosen platform model, it is necessary to avoid contention on the switch and the communication links. For

this, we keep the constraints of order (1) – (2). Nevertheless, the global limit of simultaneous transfers imposes

to choose the transfers to be carried out at a given moment. The heuristic we propose is to keep 𝑖 + 𝑗 constant

for each pair of 𝑚𝑎𝑝𝑝𝑒𝑟 process 𝑖 and 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 process j. In practice, this means that when 𝑚𝑎𝑝𝑝𝑒𝑟 1 is

forwarding to 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 5, 𝑚𝑎𝑝𝑝𝑒𝑟 2, if not forwarding to 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 4, will be encouraged to do so.Algorithm 1

presents the strategy we propose. In this algorithm, node.state contains the representation of the node's current

activity, and target node contains the identifier of the reduce to which node is transferring or wants to perform its

next transfer. When the transfer from a mapper 𝑖 to a reducer 𝑗 ends, for each inactive mapper i′ and its next

target reducer 𝑗′, we determine 𝑝𝑖′ = 𝑖′ + 𝑗′. Then we select the nodes which minimize 𝑝𝑖′. These nodes are

considered the most delayed and their transfers must begin as soon as possible. This favors the maximization of

the use of the available bandwidth and makes it possible not to violate the constraint (2) without making it

explicit in the algorithm. The ON_COMPUTE_END procedure is called as soon as a map task finishes processing

all of its data. It calls the REQUEST_TRANSFER procedure which will start the requested transfer if this does

not violate the constraints on the use of the bandwidth. The ON_TRANSFER_END procedure is called when a

transfer ends. It begins by initiating the transfer with the highest priority if it exists. Then it initiates the next

transfer of the node whose transfer has just ended, if possible. This algorithm respects the constraints imposed on

the use of the network while occupying it to the maximum at all times. Indeed, if the bandwidth of the switch is

already saturated, then only the transfer initiated by the call to REQUEST_TRANSFER on line 28 will be

effective, the termination of a communication only allowing the start of a single new transfer. On the other hand,

if the order constraints (1) and (2) have prevented transfers from starting, the switch is not saturated. The

termination of a transfer then only allows to start at most two new transfers, which is done lines 28 and 32.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒔𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

𝟏: 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑹𝑬𝑸𝑼𝑬𝑺𝑻₋𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹(𝒏𝒐𝒅𝒆)

𝟐: 𝒊𝒇 𝒕𝒉𝒆 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 𝒍𝒊𝒏𝒌 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒂𝒓𝒈𝒆𝒕 𝒓𝒆𝒅𝒖𝒄𝒆𝒓 𝒊𝒔 𝒃𝒖𝒔𝒚 𝒐𝒓 𝒕𝒉𝒆 𝒍𝒊𝒎𝒊𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒘𝒊𝒕𝒄𝒉 𝒉𝒂𝒔 𝒃𝒆𝒆𝒏 𝒓𝒆𝒂𝒄𝒉𝒆𝒅 𝒕𝒉𝒆𝒏

𝟑: 𝒏𝒐𝒅𝒆. 𝒔𝒕𝒂𝒕𝒆 ← 𝑰𝑫𝑳𝑬

𝟒: 𝒆𝒍𝒔𝒆

𝟓: 𝒏𝒐𝒅𝒆. 𝒔𝒕𝒂𝒕𝒆 ← 𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹

𝟔: 𝑺𝑻𝑨𝑹𝑻−𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹(𝒏𝒐𝒅𝒆, 𝒏𝒐𝒅𝒆. 𝒕𝒂𝒓𝒈𝒆𝒕)

𝟕: 𝒆𝒏𝒅 𝒊𝒇

𝟖: 𝒆𝒏𝒅 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆

𝟗: 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑶𝑵₋𝑪𝑶𝑴𝑷𝑼𝑻𝑬₋𝑬𝑵𝑫(𝒏𝒐𝒅𝒆)

𝟏𝟎: 𝑹𝑬𝑸𝑼𝑬𝑺𝑻₋𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹(𝒏𝒐𝒅𝒆)

𝟏𝟏: 𝒆𝒏𝒅 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆

𝟏𝟐: 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑵𝑶𝑫𝑬₋𝑻𝑶₋𝑾𝑨𝑲𝑬

𝟏𝟑: 𝒇𝒐𝒓 𝒂𝒍𝒍 𝑵 𝒏𝒐𝒅𝒆 𝒊𝒏 𝑰𝑫𝑳𝑬 𝒔𝒕𝒂𝒕𝒆 𝒅𝒐

𝟏𝟒: 𝒊𝒇 𝒕𝒂𝒓𝒈𝒆𝒕 𝒓𝒆𝒅𝒖𝒄𝒆𝒓′𝒔 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 𝒍𝒊𝒏𝒌 𝒊𝒔 𝒃𝒖𝒔𝒚 𝒕𝒉𝒆𝒏

𝟏𝟓: 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆 𝒘𝒊𝒕𝒉 𝒏𝒆𝒙𝒕 𝒏𝒐𝒅𝒆

𝟏𝟔: 𝒆𝒏𝒅𝒊𝒇

𝟏𝟕: 𝒑[𝑵] ← 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑵 + 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑵. 𝒄𝒊𝒃𝒍𝒆

𝟏𝟖: 𝒆𝒏𝒅 𝒇𝒐𝒓

𝟏𝟗: 𝒊𝒇 𝒑 𝒊𝒔 𝒆𝒎𝒑𝒕𝒚 𝒕𝒉𝒆𝒏

𝟐𝟎: 𝒓𝒆𝒕𝒖𝒓𝒏 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒗𝒂𝒍𝒖𝒆

𝟐𝟏: 𝒆𝒍𝒔𝒆

𝟐𝟐: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑵 𝒇𝒐𝒓 𝒘𝒉𝒊𝒄𝒉 𝒑[𝑵] 𝒊𝒔 𝒕𝒉𝒆 𝒍𝒐𝒘𝒆𝒔𝒕

𝟐𝟑: 𝒆𝒏𝒅 𝒊𝒇

𝟐𝟒: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

𝟐𝟓: 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑶𝑵₋𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹₋𝑬𝑵𝑫(𝒏𝒐𝒅𝒆)

𝟐𝟔: 𝒏 ← 𝑵𝑶𝑫𝑬₋𝑻𝑶₋𝑾𝑨𝑲𝑬

𝟐𝟕: 𝒊𝒇 𝒏 𝒊𝒔 𝒏𝒐𝒕 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒕𝒉𝒆𝒏 𝒕𝒉𝒆𝒏

Vol-9 Issue-2 2023 IJARIIE-ISSN(O)-2395-4396

19759 ijariie.com 2257

𝟐𝟖: 𝑹𝑬𝑸𝑼𝑬𝑺𝑻₋𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹(𝒏)

𝟐𝟗: 𝒆𝒏𝒅𝒊𝒇

𝟑𝟎: 𝒊𝒇 𝒏𝒐𝒅𝒆 𝒉𝒂𝒔𝒏′𝒕 𝒅𝒐𝒏𝒆 𝒆𝒗𝒆𝒓𝒚 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓𝒔 𝒕𝒉𝒆𝒏

𝟑𝟏: 𝒏𝒐𝒅𝒆. 𝒕𝒂𝒓𝒈𝒆𝒕 ← 𝒏𝒆𝒙𝒕 𝒏𝒐𝒅𝒆

𝟑𝟐: 𝑹𝑬𝑸𝑼𝑬𝑺𝑻₋𝑻𝑹𝑨𝑵𝑺𝑭𝑬𝑹(𝒏𝒐𝒅𝒆)

𝟑𝟑: 𝒆𝒍𝒔𝒆

𝟑𝟒: 𝒏𝒐𝒅𝒆. 𝒔𝒕𝒂𝒕𝒆 ← 𝑻𝑬𝑹𝑴𝑰𝑵𝑨𝑻𝑬𝑫

𝟑𝟓: 𝒆𝒏𝒅𝒊𝒇

𝟑𝟔: 𝒆𝒏𝒅𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆

4.Conclusion

In this article, we focused on optimizing the shuffle phase of a MapReduce application. For this we have

proposed a linear system coupled to a dynamic transfer scheduler. In the future, we plan to apply these

algorithms and compare the results of the experiment to those of Berlinska and Drozdowski based on a linear

program and a static scheduler per phase, we hope for better runtimes, faster, more stable, and fail-safe schedule

construction, and better scalability.

5.Bibliography

1. Berlinska (J.) et Drozdowski (M.). – Scheduling Divisible MapReduce Computations. Journal of Parallel and

Distributed Computing, vol. 71, n3, mars 2010, pp. 450–459.

2. Dean (J.) et Ghemawat (S.). – MapReduce : Simplified Data Processing on Large Clusters. In : Proc. Of he 6th

Symposium on Operating Systems Design & Implementation (OSDI). pp. 137–150. – San Francisco, CA,

décembre 2004.

3. Ibrahim (S.), Jin (H.), Lu (L.), Wu (S.), He (B.) et Qi (L.). – LEEN : Locality/Fairness-Aware Key

Partitioning for MapReduce in the Cloud. In : Proc. of the Second IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). pp. 17–24. – Indianapolis, IN, novembre 2010.

4. Jin (J.), Luo (J.), Song (A.), Dong (F.) et Xiong (R.). – BAR : An Efficient Data Locality Driven Task

Scheduling Algorithm for Cloud Computing. In : Proc. of the 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid). pp. 295–304. – Newport Beach, CA, mai 2011.

5. Seo (S.), Jang (I.), Woo (K.), Kim (I.), Kim (J.-S.) et Maeng (S.). – HPMR : Prefetching and Pre-shuffling in

Shared MapReduce Computation Environment. In : Proc. of the 2009 IEEE International Conference on Cluster

Computing (Cluster). – New Orleans, LA, septembre 2009.

6. Su (Y.-L.), Chen (P.-C.), Chang (J.-B.) et Shieh (C.-K.). – Variable-Sized Map and Locality-Aware Reduce

on Public-Resource Grids. FGCS, vol. 27, n6, juin 2011, pp. 843–849.

7. Veeravalli (B.), Ghose (D.), Mani (V.) et Robertazzi (T.). – Scheduling Divisible Loads in Parallel and

Distributed Systems. – IEEE Computer Society Press, 1996, 292p.

8. Zaharia (M.), Borthakur (D.), Sarma (J. S.), Elmeleegy (K.), Shenker (S.) et Stoica (I.). – Job Scheduling for

Multi-User MapReduce Clusters. – Rapport technique n UCB/EECS-2009-55, EECS Department, University of

California, Berkeley, avril 2009.

