
Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2117

ENHANCING DATA MINING

PERFORMANCE WITH THE DBSCAN

DENSITY-BASED CLUSTERING

ALGORITHM

Ranjeet Kumar1, Dr. Ravindra Kumar Gupta2

1M. Tech. Scholar, Department of Computer Science Engineering, RKDFIST, M.P., India

2 Professor, Department of Computer Science Engineering, RKDFIST, M.P., India

ABSTRACT
Data mining techniques play a crucial role in extracting valuable insights from large datasets, with clustering

methods being among the most widely used. The Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm is notable for its ability to identify clusters of varying shapes while effectively handling noise.

However, DBSCAN faces limitations with high-dimensional data and varying density clusters, which restrict its

performance in complex datasets. This thesis investigates methods to enhance the performance of DBSCAN,

focusing on optimizing parameters, improving computational efficiency, and addressing density variations within

clusters. We propose an advanced DBSCAN framework that integrates adaptive parameter selection and novel

density-based heuristics to improve accuracy and scalability in high-dimensional data mining applications.

Experimental results demonstrate that the enhanced DBSCAN algorithm achieves superior clustering accuracy,

reduced computational time, and improved noise resilience compared to the traditional DBSCAN. These findings

highlight the enhanced DBSCAN's potential as a robust clustering solution for real-world data mining tasks,

particularly in scenarios involving large, complex datasets.

Keyword: - Data Mining, Clustering Algorithms, DBSCAN (Density-Based Spatial Clustering of Applications

with Noise), Performance Optimization, Density Variations, High-Dimensional Data, Noise Handling, Parameter

Tuning, Adaptive Clustering.

1. INTRODUCTION

Clustering is a fundamental technique in data mining that organizes data into groups, or clusters, based on

similarities within the data. Among the various clustering algorithms, the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm is widely recognized for its ability to handle complex datasets,

particularly those with varying densities and noise. Unlike traditional clustering methods such as k-means,

DBSCAN does not require pre-defining the number of clusters, making it suitable for applications with

unpredictable or unstructured data patterns.

Despite its popularity, DBSCAN has certain limitations, particularly in high-dimensional and large datasets. The

algorithm’s reliance on two critical parameters—epsilon (neighborhood radius) and minPts (minimum points per

cluster)—is sensitive to data characteristics and can result in suboptimal clustering when not configured correctly.

Furthermore, the high computational complexity of DBSCAN poses challenges for scalability, limiting its efficiency

in handling extensive datasets in real-time applications. As the demand for efficient clustering techniques grows

across diverse fields—such as anomaly detection, image segmentation, and spatial analysis—enhancing the

performance and adaptability of DBSCAN is a pressing need.

This thesis focuses on the enhancement of DBSCAN’s performance in the context of data mining, addressing key

issues related to parameter sensitivity, computational efficiency, and noise resilience. By introducing optimized

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2118

methods for parameter tuning and adaptive clustering, we aim to make DBSCAN more effective in handling diverse

density variations and complex data structures. Our proposed improvements are validated through extensive testing

on synthetic and real-world datasets, illustrating the effectiveness of the enhanced DBSCAN in terms of clustering

accuracy, scalability, and computational speed.

1.1 Understanding Data Mining

Data mining is a sophisticated analytical process used to discover patterns, correlations, and insights from large

volumes of data. This field, which intersects with statistics, machine learning, and database systems, involves

extracting valuable information from datasets to support decision-making and enhance business intelligence.

As organizations increasingly rely on data for strategic and operational decisions, the importance of data

mining has grown significantly, transforming raw data into actionable knowledge.

Fig -2: Categorization of data mining techniques.

2. METHODOLOGY

The proposed methodology for enhancing the performance of the DBSCAN clustering algorithm is structured into

several key phases. Each phase focuses on addressing the limitations of the existing DBSCAN algorithm, ensuring

that the enhancements are systematic and evidence-based. Advanced DBSCAN (Density- Based Spatial Clustering

of Applications with Noise) clustering algorithm, including its key concepts, equations, and enhancements to

improve its performance. DBSCAN is a density-based clustering algorithm that groups together points that are

closely packed together (high density) while marking points that lie alone in low- density regions as outliers. The

algorithm is defined by two key parameters:

• Epsilon (ε): The maximum distance between two points for them to be considered as part of the
same neighborhood.

• MinPts: The minimum number of points required to form a dense region.

2.1 Algorithm Steps-

1. Neighbor Identification: For each point p in the dataset, identify all points within the distance ϵ\epsilonϵ

using the equation:

where D is the dataset and distance(p,q) is a distance metric (commonly Euclidean distance).

2. Core Points: A point ppp is considered a core point if the number of points in its ε- neighborhood is at

least MinPts:

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2119

3. Cluster Formation:

• If p is a core point, create a new cluster and add p to this cluster.

• For each point q in N(p,ϵ):

• If q is not yet assigned to any cluster, assign it to the current cluster.

• If q is a core point, expand the search and repeat the process.

4. Noise Handling:
• Points that are neither core points nor directly reachable from core points are classified

as noise.

2.2 Advanced DBSCAN Enhancements-

To improve the performance of the basic DBSCAN algorithm, several enhancements can be implemented,

leading to what we can call Advanced DBSCAN. These enhancements focus on dynamic parameter selection,

improved distance calculations, and more efficient neighborhood searches.

2.3 Dynamic Parameter Selection

Instead of using static values for ε and MinPts, we can use adaptive methods to calculate these parameters based

on the dataset characteristics.

• Adaptive Epsilon: Compute ε based on the k- nearest neighbors of each point. For each point p, the

distance to the kth nearest neighbor can be used to define ε:

ϵp=distance (p, NNk(p))

• Adaptive MinPts: Define MinPts as a function of the local density:

MinPtsp= α⋅density (p)

where α is a tunable parameter and density can be calculated based on the number of points in the local

neighborhood.

2.4 Improved Distance Calculation

Utilizing advanced distance metrics can enhance clustering accuracy, especially for high-dimensional data.

• Cosine Similarity: For points p and q:

2.5 Efficient Neighborhood Search

Utilizing spatial indexing structures such as R-trees or KD-trees can significantly reduce the computational

overhead associated with neighbor searches.

• R-Tree: A hierarchical data structure that allows for efficient spatial access methods, enabling rapid

retrieval of points within the ε- neighborhood.

• Parallel Processing: Implement a parallelized version of the algorithm using multi-threading or

distributed computing frameworks, allowing for simultaneous clustering of data partitions.

Procedure:

Initialization: We start by initializing a Cluster ID, lists for Clusters and Noise, and a Visited array to keep track of

which points have been processed.

Main Loop: We iterate through each point in the dataset:

• If the point has already been visited, we skip it.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2120

• We perform a region query to find all neighboring points within the defined epsilon radius.

• If the number of neighbors is less than minPts, we classify the point as noise.

Cluster Formation: If a point has enough neighbors:

• We increment the cluster ID and start forming a new cluster.

• We iterate through each neighbor, marking it as visited and expanding the neighborhood if it meets the

criteria for density.

Cluster Filtering: After identifying clusters, we can filter out any clusters that are smaller than minPts, which helps

in removing noise or less significant clusters.

Region Query Function: This helper function calculates the distance between the point and others in the dataset to

find neighbors.

 (a) Voronoi diagram (b) Delaunay grap c) Remainder graph after edge removal

Fig: 2 Step-2 Algorithm

Algorithm:

Advanced_DBSCAN Input:

Dataset D (points in n-dimensional space)

 ε (epsilon) - maximum radius of neighborhood minPts (minimum points) - minimum number of

points to form a dense region

Output: Clusters (list of clusters), Noise (list of noise points)

1. Initialize:

- Cluster ID = 0

- Create an empty list for Clusters and Noise

- Create a boolean array Visited[] to keep track of visited points, initialized to False

2. For each point P in D:

a. If Visited[P] is True, continue to the next point

b. Mark Visited[P] as True

c. Neighbors = RegionQuery(P, ε) // Find neighbors within ε distance from P

d. If |Neighbors| < minPts:

- Add P to Noise // Point P is considered noise continue

e. Cluster ID += 1

f. Create a new cluster C with Cluster ID

g. Add P to C

h. For each point Q in Neighbors:

(i) If Visited[Q] is False:

- Mark Visited[Q] as True

- Neighbors_Q = RegionQuery(Q, ε) // Find neighbors of Q

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2121

(ii) If |Neighbors_Q| >= minPts:

- Add Neighbors_Q to Neighbors // Expand the neighborhood

(iii) If Q is not in any cluster:

- Add Q to C // Add Q to the current cluster

3. For each cluster C:

a. If |C| < minPts:

- Remove C from Clusters // Remove small clusters that do not meet criteria

4. Return Clusters, Noise Function RegionQuery(P, ε):

- Initialize empty list of neighbors

- For each point O in D:

 if Distance(P, O) <= ε:

 Add O to neighbors return neighbors

 Fig: 3 Range Counting

Fig: 4 Correctness proof of our Step-2 algorithm

3. RESULT

The performance of the algorithm is evaluated based on a series of metrics that reflect its efficacy in identifying

clusters within the given dataset.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2122

(a) Running Time (b) Running Time / n log n

(c) Number of Distance Computation/ n

Fig: 5 Gaussian strips, variable n

The results are compared with those from the traditional DBSCAN to highlight the enhancements achieved through

the proposed modifications. For the strip datasets, which include both uniform and Gaussian variations, we

determined the parameters ϵ and minPts to ensure the algorithm accurately identifies each strip as a distinct cluster

while recognizing noise as outliers. Next, we aim to evaluate the performance of the algorithms by varying the value

of ϵ. The results of this experiment using the uniform fill dataset are presented in Figure.

(a) Original (b) Improved

Fig: 6 Uniform fill, variable ε

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2123

As illustrated in Figure 6 a, the performance of the original DBSCAN algorithm remains largely unaffected by

changes in the value of ϵ\epsilonϵ. This is due to the fact that the original algorithm conducts a complete scan of the

entire dataset for each point during the range query, regardless of the ϵ value.

In contrast, Figure 6b reveals more intriguing results, demonstrating that both the new algorithm and the original

algorithm with grid are highly sensitive to variations in ϵ. Typically, the original grid-based algorithm benefits from

a smaller ϵ value, as a larger ϵ\epsilonϵ leads to an increased number of points within each grid cell, thereby make

the range query more computationally intensive. Conversely, the new algorithm benefits from a larger ϵ, as having

more points within a grid cell increases the likelihood of locating a grid cell containing more than the minimum

number of points, minPts. The running times of both algorithms converge when ϵ\epsilonϵ is around 1.5. However,

at this value, the algorithm tends to identify multiple small clusters, which is not the intended outcome. When ϵ is

set to 2 or higher, we achieve the desired result of recognizing all points as a single cluster. At this point, the new

algorithm demonstrates superior performance compared to the original grid-based version. For the other data sets

figure 7, 8, 9 and 10.

 (a) Original (b) Improved

Fig: 7 Uniform discs, variable ε

 (a) Original (b) Improved

Fig: 8 Gaussian discs, variable ε

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2124

(a) Original (b) Improved

Fig: 9 Uniform strips, variable ε

 (a) Original (b) Improved

 Fig: 10 Gaussian strips, variable ε

 (a) Original (b) Improved

Fig: 12 Uniform discs, variable minPts

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2125

 (a) Original (b) Improved

Fig: 13 Uniform strips, variable minPts

 (a) Original (b) Improved

Fig: 14 Gaussian discs, variable minP ts

 (a) Original (b) Improved

Fig: 15 Gaussian strips, variable minP ts

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2126

In the following experiment, we aimed to evaluate the algorithms' performance with varying values of minPts. The

results for the uniform fill dataset are presented in Figure 12. Consistent with the observations in Figure 13a, Figure

13a indicates that the original DBSCAN algorithm shows minimal sensitivity to changes in minPts.

Figure 13b illustrates that the grid-based version of the original algorithm remains fairly stable for minPts≤8.

However, when 8<minPts ≤32, the algorithm experiences a slowdown as the minPts value increases. While we

cannot pinpoint the exact cause of this behavior, we note that for minPts≤8, the algorithm tends to yield a single

large cluster. In contrast, when 8<minPts ≤32, the number of resultant clusters increases while their sizes

decrease. The new algorithm also experiences increased processing time with higher values of minPts, although

it remains stable once minPts reaches 16. One of the advantages of this new approach is its ability to bypass

certain distance computations when the number of points within a cell exceeds minPts. As minPts increases, the

number of such cells diminishes until it eventually reaches zero. Additionally, it is important to note that when

examining points in neighboring cells, the new algorithm terminates its search once it has identified at least

minPts points within a distance of ϵ\epsilonϵ. Therefore, if minPts is set too high, the algorithm's responsiveness

to changes in minPts may diminish.

4. CONCLUSIONS

This paper compared the performance of the newly developed algorithm against the "original DBSCAN with
grid" approach, focusing specifically on their running times. The findings indicate that the new algorithm
consistently outperforms the original grid-based version across various test scenarios. Notably, as the value of
ϵ\epsilonϵ increases, the efficiency of the new algorithm improves, suggesting that starting with a larger
ϵ\epsilonϵ may enhance clustering performance. It is advisable to first explore higher values of ϵ\epsilonϵ and
then gradually reduce it to identify the optimal clustering outcome.

Additionally, our experiments revealed that lower values of minPts correspond to faster execution times for the

new algorithm. Consequently, an effective strategy for clustering would be to initiate the process with a smaller

minPts value and progressively increase it until a satisfactory clustering result is achieved.

5. REFERENCES

[1] Yang, Chen Qian, Haomiao Li, Yuchao Gao, Jinran Wu, Chan-Juan Liu & Shangrui Zhao, “An efficient

DBSCAN optimized by arithmetic optimization algorithm with opposition-based learning”, Volume 78, pages

19566–19604, (2022), Springer.

[2] Yuxian Duan; Changyun Liu; Song Li, “Battlefield Target Grouping by a Hybridization of an Improved Whale

Optimization Algorithm and Affinity Propagation”,IEEE Access (Volume: 9), 2021, DOI:

https://doi.org/10.1109/ACCESS.2021.3067729.

[3] Stephen Akatore Atimbire, Justice Kwame Appati & Ebenezer Owusu, “Empirical exploration of whale

optimisation algorithm for heart disease prediction”, Scientific Reports volume 14, Article number: 4530

(2024).

[4] Shaoyuan Weng, Zimeng Liu, Zongwen Fan & Guoliang Zhang, “A whale optimization algorithm- based

ensemble model for power consumption prediction”, 2024, Springer.

[5] Rami Sihwail, Mariam Al Ghamri, Dyala Ibrahim, “An Enhanced Model of Whale Optimization Algorithm and

K-nearest Neighbors for Malware Detection”, Vol.17, No.3, 2024, International Journal of Intelligent

Engineering and Systems, DOI: 10.22266/ijies2024.0630.47.

[6] K M Archana Patel & Prateek Thakral, “The best clustering algorithms in data mining”, ISBN:978-1- 5090-

0396-9, 2016, IEEE, DOI: 10.1109/ICCSP.2016.7754534.

[7] Manish Verma, Mauly Srivastava, Neha Chack, Atul Kumar Diswar, Nidhi Gupta, “A Comparative Study of

Various Clustering Algorithms in Data Mining”, ISSN: 2248-9622, Vol. 2, Issue 3, 2012, IJERA.

[8] Ashish Dutt, Saeed Aghabozrgi, Maizatul Akmal Binti Ismail, and Hamidreza Mahroeian, “Clustering

https://doi.org/10.1109/ACCESS.2021.3067729

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26229 ijariie.com 2127

Algorithms Applied in Educational Data Mining”, Vol. 5, No. 2, March 2015, International Journal of

Information and Electronics Engineering, DOI: 10.7763/IJIEE.2015.V5.513.

[9] G. Biswas; J.B. Weinberg; D.H. Fisher, “ITERATE: a conceptual clustering algorithm for data mining”,

Volume: 28, Issue: 2, 2002, IEEE, DOI: 10.1109/5326.669556.

[10] Grabmeier and JRudolph A(2019)Techniques of Cluster Algorithms in Data MiningData Mining and

Knowledge Discovery10.1023/A:10163084046276:4 (303-360)Online publication date: 1-Jun-2019. DOI:

https://dl.acm.org/doi/10.1023/A%3A1016308404627

[11] Syed Thouheed Ahmed, S. Sreedhar Kumar, B. Anusha, P. Bhumika, M. Gunashree & B. Ishwarya, Chengwei

Liu, Yixiang Chan, Syed Hasnain Alam Kazmi, Hao Fu, “Financial Fraud Detection Model: Based on Random

Forest,” International Journal of Economics and Finance, Vol. 7, Issue. 7, pp. 178-188, 2015.

[12] Hitesh D. Bambhava, Prof. Jayeshkumar Pitroda, Prof. Jaydev J. Bhavsar (2013), “A Comparative Study on

Bamboo Scaffolding And Metal Scaffolding in Construction Industry Using Statistical Methods”, International

Journal of Engineering Trends and Technology (IJETT) – Volume 4, Issue 6, June 2013, Pg.2330-2337.

[13] P. Ganesh Prabhu, D. Ambika, “Study on Behaviour of Workers in Construction Industry to Improve

Production Efficiency”, International Journal of Civil, Structural, Environmental and Infrastructure Engineering

Research and Development (IJCSEIERD), Vol. 3, Issue 1, Mar 2013, 59-66.

[14] Kawtar Sabor, Damien Jougnot, Roger Guerin, Barthélémy Steck, Jean-Marie Henault, Louis Apffel, Denis

Vautrin, “A data mining approach for improved interpretation of ERT inverted sections using the DBSCAN

clustering algorithm”, Geophysical Journal International, Volume 225, Issue 2, May 2021, Pages 1304–

1318,DOI:https://doi.org/10.1093/gji/ggab023

[15] Fang Huang, Qiang Zhu, Ji Zhou, Jian Tao, Xiaocheng Zhou, Du Jin, Xicheng Tan and Lizhe Wang, “Research

on the Parallelization of the DBSCAN Clustering Algorithm for Spatial Data Mining Based on the Spark

Platform”, Volume 9, Issue 12, 2017, 9(12), 1301, MPDI, DOI: https://doi.org/10.3390/rs9121301.

[16] Cheng-Fa Tsai; Chun-Yi Sung, “DBSCALE: An efficient density-based clustering algorithm for data mining in

large databases”, ISBN:978-1-4244-7969- 6, 2010, IEEE, DOI: 10.1109/PACCS.2010.5627040.

[17] Suresh kurumalla, P srinivasa rao, “K-Nearest Neighbor Based Dbscan Clustering Algorithm For Image

Segmentation”, 31st October 2016. Vol.92. No.2, ISSN: 1992-8645, Journal of Theoretical and Applied

Information Technology.

