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ABSTRACT 
Data mining techniques play a crucial role in extracting valuable insights from large datasets, with clustering 

methods being among the most widely used. The Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm is notable for its ability to identify clusters of varying shapes while effectively handling noise. 

However, DBSCAN faces limitations with high-dimensional data and varying density clusters, which restrict its 

performance in complex datasets. This thesis investigates methods to enhance the performance of DBSCAN, 

focusing on optimizing parameters, improving computational efficiency, and addressing density variations within 

clusters. We propose an advanced DBSCAN framework that integrates adaptive parameter selection and novel 

density-based heuristics to improve accuracy and scalability in high-dimensional data mining applications. 

Experimental results demonstrate that the enhanced DBSCAN algorithm achieves superior clustering accuracy, 

reduced computational time, and improved noise resilience compared to the traditional DBSCAN. These findings 

highlight the enhanced DBSCAN's potential as a robust clustering solution for real-world data mining tasks, 

particularly in scenarios involving large, complex datasets. 
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1. INTRODUCTION 

Clustering is a fundamental technique in data mining that organizes data into groups, or clusters, based on 

similarities within the data. Among the various clustering algorithms, the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm is widely recognized for its ability to handle complex datasets, 

particularly those with varying densities and noise. Unlike traditional clustering methods such as k-means, 

DBSCAN does not require pre-defining the number of clusters, making it suitable for applications with 

unpredictable or unstructured data patterns. 

Despite its popularity, DBSCAN has certain limitations, particularly in high-dimensional and large datasets. The 

algorithm’s reliance on two critical parameters—epsilon (neighborhood radius) and minPts (minimum points per 

cluster)—is sensitive to data characteristics and can result in suboptimal clustering when not configured correctly. 

Furthermore, the high computational complexity of DBSCAN poses challenges for scalability, limiting its efficiency 

in handling extensive datasets in real-time applications. As the demand for efficient clustering techniques grows 

across diverse fields—such as anomaly detection, image segmentation, and spatial analysis—enhancing the 

performance and adaptability of DBSCAN is a pressing need. 

This thesis focuses on the enhancement of DBSCAN’s performance in the context of data mining, addressing key 

issues related to parameter sensitivity, computational efficiency, and noise resilience. By introducing optimized 
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methods for parameter tuning and adaptive clustering, we aim to make DBSCAN more effective in handling diverse 

density variations and complex data structures. Our proposed improvements are validated through extensive testing 

on synthetic and real-world datasets, illustrating the effectiveness of the enhanced DBSCAN in terms of clustering 

accuracy, scalability, and computational speed. 

 

1.1 Understanding Data Mining 

Data mining is a sophisticated analytical process used to discover patterns, correlations, and insights from large 

volumes of data. This field, which intersects with statistics, machine learning, and database systems, involves 

extracting valuable information from datasets to support decision-making and enhance business intelligence. 

As organizations increasingly rely on data for strategic and operational decisions, the importance of data 

mining has grown significantly, transforming raw data into actionable knowledge. 

Fig -2: Categorization of data mining techniques. 

 

 

2. METHODOLOGY 

The proposed methodology for enhancing the performance of the DBSCAN clustering algorithm is structured into 

several key phases. Each phase focuses on addressing the limitations of the existing DBSCAN algorithm, ensuring 

that the enhancements are systematic and evidence-based. Advanced DBSCAN (Density- Based Spatial Clustering 

of Applications with Noise) clustering algorithm, including its key concepts, equations, and enhancements to 

improve its performance. DBSCAN is a density-based clustering algorithm that groups together points that are 

closely packed together (high density) while marking points that lie alone in low- density regions as outliers. The 

algorithm is defined by two key parameters: 

• Epsilon (ε): The maximum distance between two points for them to be considered as part of the 
same neighborhood. 

• MinPts: The minimum number of points required to form a dense region. 

 

2.1 Algorithm Steps- 

1. Neighbor Identification: For each point p in the dataset, identify all points within the distance ϵ\epsilonϵ 

using the equation: 

where D is the dataset and distance(p,q) is a distance metric (commonly Euclidean distance). 

2. Core Points: A point ppp is considered a core point if the number of points in its ε- neighborhood is at 

least MinPts: 

 



Vol-11 Issue-2 2025  IJARIIE-ISSN(O)-2395-4396 
 

26229 ijariie.com 2119 

3. Cluster Formation: 

• If p is a core point, create a new cluster and add p to this cluster. 

• For each point q in N(p,ϵ): 

• If q is not yet assigned to any cluster, assign it to the current cluster. 

• If q is a core point, expand the search and repeat the process. 

 

4. Noise Handling: 
• Points that are neither core points nor directly reachable from core points are classified 

as noise. 

 

2.2 Advanced DBSCAN Enhancements- 

To improve the performance of the basic DBSCAN algorithm, several enhancements can be implemented, 

leading to what we can call Advanced DBSCAN. These enhancements focus on dynamic parameter selection, 

improved distance calculations, and more efficient neighborhood searches. 

 

2.3 Dynamic Parameter Selection  

Instead of using static values for ε and MinPts, we can use adaptive methods to calculate these parameters based 

on the dataset characteristics. 

• Adaptive Epsilon: Compute ε based on the k- nearest neighbors of each point. For each point p, the 

distance to the kth nearest neighbor can be used to define ε: 

ϵp=distance (p, NNk(p)) 

• Adaptive MinPts: Define MinPts as a function of the local density: 

MinPtsp= α⋅density (p) 

where α is a tunable parameter and density can be calculated based on the number of points in the local 

neighborhood. 

 

2.4 Improved Distance Calculation 

Utilizing advanced distance metrics can enhance clustering accuracy, especially for high-dimensional data. 

• Cosine Similarity: For points p and q: 

 

2.5 Efficient Neighborhood Search 

Utilizing spatial indexing structures such as R-trees or KD-trees can significantly reduce the computational 

overhead associated with neighbor searches. 

• R-Tree: A hierarchical data structure that allows for efficient spatial access methods, enabling rapid 

retrieval of points within the ε- neighborhood. 

• Parallel Processing: Implement a parallelized version of the algorithm using multi-threading or 

distributed computing frameworks, allowing for simultaneous clustering of data partitions. 

Procedure: 

Initialization: We start by initializing a Cluster ID, lists for Clusters and Noise, and a Visited array to keep track of 

which points have been processed. 

 
Main Loop: We iterate through each point in the dataset: 

• If the point has already been visited, we skip it. 
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• We perform a region query to find all neighboring points within the defined epsilon radius. 

• If the number of neighbors is less than minPts, we classify the point as noise. 

Cluster Formation: If a point has enough neighbors: 

• We increment the cluster ID and start forming a new cluster. 

• We iterate through each neighbor, marking it as visited and expanding the neighborhood if it meets the 

criteria for density. 

Cluster Filtering: After identifying clusters, we can filter out any clusters that are smaller than minPts, which helps 

in removing noise or less significant clusters. 

 

Region Query Function: This helper function calculates the distance between the point and others in the dataset to 

find neighbors. 

 

         (a) Voronoi diagram                                             (b) Delaunay grap        c) Remainder graph after edge removal 

Fig: 2 Step-2 Algorithm 

Algorithm: 

Advanced_DBSCAN Input: 

Dataset D (points in n-dimensional space) 

 ε (epsilon) - maximum radius of neighborhood minPts (minimum points) - minimum number of 

points to form a dense region 

Output: Clusters (list of clusters), Noise (list of noise points) 

1. Initialize: 

- Cluster ID = 0 

- Create an empty list for Clusters and Noise 

- Create a boolean array Visited[] to keep track of visited points, initialized to False 

2. For each point P in D: 

a. If Visited[P] is True, continue to the next point 

b. Mark Visited[P] as True 

c. Neighbors = RegionQuery(P, ε) // Find neighbors within ε distance from P 

d. If |Neighbors| < minPts: 

- Add P to Noise // Point P is considered noise continue 

e. Cluster ID += 1 

f. Create a new cluster C with Cluster ID 

g. Add P to C 

h. For each point Q in Neighbors: 

(i) If Visited[Q] is False: 

- Mark Visited[Q] as True 

- Neighbors_Q = RegionQuery(Q, ε) // Find neighbors of Q 
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(ii) If |Neighbors_Q| >= minPts: 

- Add Neighbors_Q to Neighbors // Expand the neighborhood 

(iii) If Q is not in any cluster: 

- Add Q to C // Add Q to the current cluster 

3.  For each cluster C: 

a. If |C| < minPts: 

- Remove C from Clusters // Remove small clusters that do not meet criteria 

4. Return Clusters, Noise Function RegionQuery(P, ε): 

- Initialize empty list of neighbors 

- For each point O in D: 

       if Distance(P, O) <= ε: 

    Add O to neighbors return neighbors 

 

  Fig: 3 Range Counting 

 

 

Fig: 4  Correctness proof of our Step-2 algorithm 

 

 

3. RESULT 

The performance of the algorithm is evaluated based on a series of metrics that reflect its efficacy in identifying 

clusters within the given dataset. 



Vol-11 Issue-2 2025  IJARIIE-ISSN(O)-2395-4396 
 

26229 ijariie.com 2122 

 

 
(a) Running Time              (b) Running Time / n log n 

 

 

(c) Number of Distance Computation/ n 

Fig: 5 Gaussian strips, variable n 

The results are compared with those from the traditional DBSCAN to highlight the enhancements achieved through 

the proposed modifications. For the strip datasets, which include both uniform and Gaussian variations, we 

determined the parameters ϵ and minPts to ensure the algorithm accurately identifies each strip as a distinct cluster 

while recognizing noise as outliers. Next, we aim to evaluate the performance of the algorithms by varying the value 

of ϵ. The results of this experiment using the uniform fill dataset are presented in Figure. 

 

(a) Original                                            (b) Improved 

Fig: 6 Uniform fill, variable ε 
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As illustrated in Figure 6 a, the performance of the original DBSCAN algorithm remains largely unaffected by 

changes in the value of ϵ\epsilonϵ. This is due to the fact that the original algorithm conducts a complete scan of the 

entire dataset for each point during the range query, regardless of the ϵ value. 

In contrast, Figure 6b reveals more intriguing results, demonstrating that both the new algorithm and the original 

algorithm with grid are highly sensitive to variations in ϵ. Typically, the original grid-based algorithm benefits from 

a smaller ϵ value, as a larger ϵ\epsilonϵ leads to an increased number of points within each grid cell, thereby make 

the range query more computationally intensive. Conversely, the new algorithm benefits from a larger ϵ, as having 

more points within a grid cell increases the likelihood of locating a grid cell containing more than the minimum 

number of points, minPts. The running times of both algorithms converge when ϵ\epsilonϵ is around 1.5. However, 

at this value, the algorithm tends to identify multiple small clusters, which is not the intended outcome. When ϵ is 

set to 2 or higher, we achieve the desired result of recognizing all points as a single cluster. At this point, the new 

algorithm demonstrates superior performance compared to the original grid-based version. For the other data sets 

figure 7, 8, 9 and 10. 

 

 
 

                                         (a) Original                                                (b) Improved 

 

Fig: 7 Uniform discs, variable ε 

 
                                         (a) Original                                                (b) Improved 

 

Fig: 8 Gaussian discs, variable ε 
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(a) Original                                                (b) Improved 

 
Fig: 9 Uniform strips, variable ε 

 
 
                                         (a) Original                                                (b) Improved 

 
           Fig: 10 Gaussian strips, variable ε 

 
                                                (a) Original                                                (b) Improved 

 

Fig: 12 Uniform discs, variable minPts 



Vol-11 Issue-2 2025  IJARIIE-ISSN(O)-2395-4396 
 

26229 ijariie.com 2125 

 
                                                (a) Original                                                (b) Improved 

Fig: 13 Uniform strips, variable minPts 

 
 

 
                                                (a) Original                                                (b) Improved 

Fig: 14 Gaussian discs, variable minP ts 

 
 

                                                (a) Original                                                (b) Improved 
 

Fig: 15 Gaussian strips, variable minP ts 
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In the following experiment, we aimed to evaluate the algorithms' performance with varying values of minPts. The 

results for the uniform fill dataset are presented in Figure 12. Consistent with the observations in Figure 13a, Figure 

13a indicates that the original DBSCAN algorithm shows minimal sensitivity to changes in minPts. 

Figure 13b illustrates that the grid-based version of the original algorithm remains fairly stable for minPts≤8. 

However, when 8<minPts ≤32, the algorithm experiences a slowdown as the minPts value increases. While we 

cannot pinpoint the exact cause of this behavior, we note that for minPts≤8, the algorithm tends to yield a single 

large cluster. In contrast, when 8<minPts ≤32, the number of resultant clusters increases while their sizes 

decrease. The new algorithm also experiences increased processing time with higher values of minPts, although 

it remains stable once minPts reaches 16. One of the advantages of this new approach is its ability to bypass 

certain distance computations when the number of points within a cell exceeds minPts. As minPts increases, the 

number of such cells diminishes until it eventually reaches zero. Additionally, it is important to note that when 

examining points in neighboring cells, the new algorithm terminates its search once it has identified at least 

minPts points within a distance of ϵ\epsilonϵ. Therefore, if minPts is set too high, the algorithm's responsiveness 

to changes in minPts may diminish.                   

 
 

4. CONCLUSIONS 

This paper compared the performance of the newly developed algorithm against the "original DBSCAN with 
grid" approach, focusing specifically on their running times. The findings indicate that the new algorithm 
consistently outperforms the original grid-based version across various test scenarios. Notably, as the value of 
ϵ\epsilonϵ increases, the efficiency of the new algorithm improves, suggesting that starting with a larger 
ϵ\epsilonϵ may enhance clustering performance. It is advisable to first explore higher values of ϵ\epsilonϵ and 
then gradually reduce it to identify the optimal clustering outcome. 

Additionally, our experiments revealed that lower values of minPts correspond to faster execution times for the 

new algorithm. Consequently, an effective strategy for clustering would be to initiate the process with a smaller 

minPts value and progressively increase it until a satisfactory clustering result is achieved. 
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