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EPilots is an algorithm that forecasts harsh 

landings. 
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Abstract 

Over fifty percent of all airline accidents may have been avoided by doing a go-around. Making a timely choice 

to conduct a go-around manoeuvre has the potential of reducing the overall accident rate in the aviation sector. 

In this research, we propose a cockpit-deployable machine learning system for assisting flight crew go-around 

making choices based on a hard landing event prediction. 

This paper describes a hybrid technique for hard landing prediction that employs features describing temporal 

relationships of aircraft characteristics as neural network inputs. Based on a huge dataset of 58177 airline 

flights, our technique offers an average sensitivity of 85% and a specificity of 74% at the go-around point. As a 

result, our method is a cockpit-deployable recommendation system that outperforms previous methods. 
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1. INTRODUCTION 

During 2008 AND 2017, 49% of fatal commercial aircraft accidents happened during the final approach and the 

landing, a number that has not altered in several decades [1]. A significant proportion of approach and landing 

incidents and incidents involved the runway excursions, which have been identified as one of the top safety 

issues shared by European Union Aviation Safety Agency (EASA) member countries as well as the US National 

Transportation Safety Board and the US Federal Aviation Administration There are various recognised 

antecedents of runway excursions upon landing, according to EASA. These include an unstable approach, a 

harsh landing, an irregular attitude or bounce during landing, lateral deviations of the aircraft at high speed on 

the ground, and a short rolling distance during landing. Some precursors can arise in isolation, but they can also 

trigger the other precursors, with the unstable approach being the most common. According to Boeing, while 

just 3% of commercial aircraft approaches matched the requirements for an unstable approach, 97% of them 

continued to land rather than performing a go-around.A research done by Blajev and Curtis discovered that 83% 

of runway excursion incidents during their 16-year analysis period may have been prevented by making a go-

around choice. As a result, making a timely choice to conduct a go-around operation might potentially lower the 

total aviation sector accident rate. 

A go-around happens when the flight crew decides not to continue an approach landing and follows procedures 

to undertake another approach. Flight team personnel, and it can be performed at any moment between the final 

approach fix point and the wheels landing down the runway (but before the brakes, spoilers, or thrust reversers 

are activated). Other causes for a go-around include traffic, a closed runway, or severe weather conditions. 

Despite most airlines having a defined policy and training on go-around procedures, operational statistics reveal 

that flight crew decision-making in choosing for a go-around can be impacted by a variety of other 

circumstances. Fatigue, flight schedule pressure, time strain, excessive head-down work, inaccurate expectation 

of aircraft deceleration, visual illusions, and other factors are examples of these. Such aboard technologies might 

make use of the massive amounts of data generated by aviation systems, as well as the exponential 

developments in machine learning and neural networks. EASA anticipates that machine learning will have a 

significant influence on aviation, particularly in high workload situations (e.g., go-around or diversion 

Intelligent technology in aviation is seen as an important objective according to the European Strategy for 

Safety in Aviation 2020-2024. On the assumption that a hard landing (HL) has predecessors and may thus be 

anticipated, this study provides a cockpit deployable machine learning method to forecast hard landings while 

taking aircraft dynamics and configuration into account. This article specifically analyses three key hypotheses. 

A major hypothesis is to determine to what extent HL may be anticipated at DH for go-around advice based on 

FMS variable analysis. A second notion is to investigate if precursors are specific to aircraft types. A third 

hypothesis is to test if the variability in aircraft state variables may give enough information to forecast HL 

regardless of operational context (such as environmental circumstances and automation considerations). 
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11. Literature Survey:       

Although much study has been done on the prediction of fly landing mishaps and other unsafely conditions the 

prediction of hard landing accidents has received less attention. Furthermore, the majority of recent work 

focuses on the prediction of HL for unmanned aerial vehicles (UAV), which have fundamentally different 

dynamical properties and flying rules than commercial aircraft. A Hard Landing (HL) is a condition in which 

the aeroplane makes an excessive contact on the ground while landing. Because this impact is directly tied to 

vertical (or normal) acceleration, HL may be defined as flights in which the vertical acceleration exceeds the 

aircraft type's restricted value during the landing phase. Classifiers are divided into two types: machine learning 

and deep learning. Machine learning approaches  use a classifier to analyse UAV flight data captured with the 

Quick Access Recorder (QAR) and sampled at a discrete set of heights that constitute the feature space. The 

values of variables characterising aircraft dynamics measured between 9 and 2 metres before TD are used in 

most techniques Others  [1] A hybrid model with a net architecture that has been optimised. We present a hybrid 

technique that combines features characterising the temporal interdependence of aircraft data as input to an 

optimised neural network. To prevent bias induced by a lack of convergence of sophisticated models (such as 

LSTM), we employ a conventional network and characterise potential temporal dependencies associated with 

unstable methods as the variability of various types of aircraft characteristics at a set of altitudes. The 

concatenation of such variability for variables classified into four major groups (physical, actuator, pilot 

operations, and all of them) is used as an input feature by various designs to identify the best subset. [2] 

Extensive comparison to SoA in a big commercial flight database. Our models have been evaluated and 

compared to SoA techniques on a huge database of Flight Management Systems (FMS) recorded data of an 

airline that is no longer in service, which comprises three distinct aircraft models (A319, A320, and A321). The 

results reveal that when all variable types are examined, the best classification network obtains an average recall 

of HL events of 85% with a specificity of 75%, outperforming existing LSTM approaches found in the 

literature. 

[3]Assessment of classifiers and repressor. We studied the efficacy of regression and classification models in 

terms of flight height and numerous aircraft characteristics, including the effects of automation and pilot 

movements, with the ultimate objective of establishing a cockpit deployable recommendation system. The 

results of our huge dataset from commercial flights demonstrate that, while the regression networks perform 

similarly to SoA approaches (with MSE of 103 in estimations at TD), the accuracy for identifying HL is 

relatively poor (46% sensitivity). This suggests that regression models might not be the best choice for detecting 

HL events in a field deployable support system.[4] Error sources and the ability to offer a workaround. Unlike 

earlier techniques, we investigate the ability of networks to identify HL at the decision elevation as well as the 

impact of the operational context. We also investigated the sources of mistakes, such as the optimum variable 

type, the ideal altitude range for predictions, aircraft type biases, and the competence of regression coefficients 

for HL prediction. 

 

Fig[1] System Architecture 
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111. Existing System: 

A Hard Touchdown (HL) is a landing in which the aeroplane makes an excessive impact with the ground. 

Because this impact is directly tied to vertical (or standard) acceleration, HL may be defined as flights in which 

the aircraft's vertical speed exceeds the aircraft type's restricted value during the landing stage. A threshold on 

this normal acceleration (Airbus employs a vertical velocity > 2G at Touch Down, TD) initiates maintenance; 

therefore it may be used as criteria for HL detection. Under the former definition of HL. 

existing approaches for HL prediction can be split into two groups: those based on a classifier to discriminate 

flights with normal acceleration at TD above a given threshold from other flights and those based on a regress or 

that predicts the normal acceleration with the aim of using this predicted value as the HL detector. Classifiers 

can be categorized into machine learning and deep learning approaches. Machine learning methods apply a 

classifier to UAV flight data recorder using the Quick Access Recorder (QAR) sampled at a discrete set of 

heights that define the feature space. Most methods use the values of variables describing aircraft dynamics 

sampled between 9 and 2 meters before TD. Others, like use statistical descriptors (panel data) of such variables 

also sampled at the very last meters before TD. On the other hand, it is uncertain how capable these techniques 

are of capturing time-sequence connections that variables may have over the approach phase. However, the time 

window (9-2 metres before landing) employed for UAV forecasts might not be adequate for HL forecasts in 

commercial aircraft. In commercial planes, the approximate limit height (known at Decision Height -DH-) for 

determining a go around is 100 feet (38 metres). As a result, regardless of their accuracy in forecasting HL, 

these ML approaches are not suitable for commercial flights due to the needed height range. Deep learning 

techniques are mostly based on designs of Long Short-Term Memory Recurrent  

Neural Network (LSTM). These networks, proposed by [20], are a variation on Recurrent Neural Networks. 

Although the encouraging results, we believe that [22]'s experimental design falls short in key areas for fully 

appraising the possibility for installation in the cockpit. First, the test set is balanced, with about a comparable 

amount of HL and non-HL situations. However, in practise, HL instances are uncommon, accounting for just 3-

4% of flights [23]. Precision may be overly optimistic and even unrealistic as a result of balancing the test set. 

Disadvantages An existing system that has not been implemented Error sources and the ability to offer a go-

around. A hitherto unimplemented hybrid technique for hard landing prediction that leverages features 

modelling temporal relationships of aircraft characteristics as neural network inputs. 

 

1V. Proposed System: 

This study examines options for early prediction of hard landings in commercial aircraft. Unlike prior efforts, 

the tests are intended to determine how far approaches may be deployed in the cockpit as go-around suggestion 

systems. We contribute to the following factors with this end goal: 

[1] A hybrid model with a net architecture that has been optimised. We present a hybrid technique that combines 

features modelling the temporal interdependence of aircraft data as input to an optimised neural network. To 

prevent bias induced by a lack of convergence of sophisticated models (such as LSTM), we employ a standard 

network and characterise potential temporal dependencies associated with unstable methods as the variability of 

various types of aircraft characteristics at a set of altitudes. 

The combination of such variability for variables classified into four major groups (physical, actuator, pilot 

operations, and all of them) is used as an input feature by different designs to identify the best subset.  

[2]Comprehensive comparison to SoA in a large commercial flight database. Our models have been evaluated 

and compared to SoA approaches on a huge database of Flight Management System (FMS) recorded data of a 

defunct airline, which comprises three distinct aircraft models (A319, A320, and A321). When all variable types 

are examined, the best classification network obtains an average recall of HL events of 85% and a specificity of 

75%, outperforming contemporary LSTM networks. 

[3] Performance evaluation of classifiers and repressors’. We performed a study of the effectiveness of 

classification and regression models in terms of flight height and other aircraft characteristics, including the 

effects of automation and pilot movements, with the ultimate objective of establishing a cockpit deployable 

recommendation system. The results of our large commercial flight dataset demonstrate that, while our 

regression networks perform similarly to SoA approaches (with MSE of 103 in estimations at TD), the accuracy 

for identifying HL is relatively poor (46% sensitivity). This suggests that regression models may not be the best 

choice for detecting HL occurrences in a cockpit deployable support system. 
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4) Problem sources and the ability to offer a workaround. Unlike earlier techniques, we investigate network 

capabilities for detecting HL before the decision height, as well as the impact of the operational environment. 

We also investigated the sources of mistakes, such as the optimum variable type, the ideal altitude range for 

predictions, aircraft type biases, and the competence of repressors for HL prediction. 

Advantages The machine learning technique may also be enhanced in a number of ways. Although our results 

appear to be superior to existing approaches, a more thorough examination of temporal relationships utilising a 

convolutional neural network to identify deep dependencies might boost our models. 

studied in the proposed system for a cockpit-deployable machine learning system to assist flight crew go-around 

decisions. 

 

V. IMPLEMENTATION 

    MODULES: 

(1) Service Provider 

(2) View and Authorize Users 

(3) Remote User 

 

[1] Service Provider 

The provider of services must login to this module using a valid user name and password. He can do many 

things after successfully logging in, such as Login, Search through Flight Landing Data Sets and Learn & Test. 

View Flight Landing Trained and Verified Accuracy Results, See Prediction Of Flight Land Type, View Flight 

Landing Type Ratio, Export Forecast Data Sets, which are View Flight Landing Ratio Results, See All Online 

Users. 

[2] View and Authorize Users 

The admin may view a list of all registered users in this module. The admin can examine the user's data such as 

user name, email, and address, and the admin can authorise the users. 

[3] Remote User 

There are a n number of users in this module. Before doing any activities, someone must first sign up. When a 

user registers, their information is saved in a database.  After successfully registering, he must login using his 

authorised user name and password. Once logged in, the user may do the following actions: REGISTER AND 

LOGIN, forecast FLIGHT LANDING TYPE, and VIEW YOUR PROFILE. 

 

V1. CONCLUSION 

The outcomes that follow can be drawn from the research presented in this study. The examination of 

automation elements (autopilot, flight director, and auto-thrust) indicates that these parameters have no effect on 

the probability of an HL event and, thus, may not need to be included in models. Experiments for design 

optimisation demonstrate that the configurations with the fewest neurons achieve the highest sensitivity. 

According to the literature [24], raising the number of levels and neurons has no effect on the performance of 

classifiers or regresses. Models incorporating simply physical variables beat state-of-the-art LSTM algorithms, 

with a mean recall of 94% and a specificity of 86%. This increases the model's confidence when forecasting HL 

in an easily deployable system. Even if we outperform previous methods in terms of capability for go-around 

advice before DH, there is a considerable loss in recall and specificity due to the fluid nature of a landing 

strategy and factors impacting HL near to TD. Experiments combining classifiers and regression techniques 

reveal that a low MSE loss in predicting maximum G does not ensure good HL predictions. Experiments 

evaluating models' capacity to detect HL early reveal that classifiers can reliably predict Hf before DH. The 

performance of neural networks might be improved by employing one-dimensional convolution networks and 

other architectures to extract deep learning characteristics from continuous inputs for a better combination of the 

three categories of variables. Models should also include additional characteristics known to affect vehicle 

dynamics, such as aircraft mass and centre of gravity position. Finally, there are several difficulties that have not 

been addressed in this study and should be addressed in the future. Among these are the classifier's (regressor's) 
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resilience to unknown situations and its behaviour in a drifting data environment. In a high-risk situation like 

flight, It will undoubtedly be necessary to study such concerns, which we intend to accomplish in future studies. 

In the not-too-distant future, such a system might be expanded to incorporate Air Traffic Management, in which 

information is exchanged with the Air Transport Controller to predict anticipated scenarios and optimise runway 

utilisation. 
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