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Abstract 

With the increasing number of Internet of Things (IoT) devices, effective computing performance has become a critical issue. 

Strong processing power is required for a multitude of Internet of Things applications, including traffic control, augmented 

reality, location tracking, and autonomous driving, which all need extensive real-time data processing. The introduction of 

Mobile Edge Computing (MEC), aims to safely and effectively tackle this issue via the internet. IoT devices may now be used to 

offload computationally demanding activities by including a MEC server. Delays and transmission cost, however, are significant 

disadvantages. By serving as MEC servers, Unmanned Aerial Vehicles (UAV), could potentially lessen this problem thanks to 

their great mobility and inexpensive cost. No matter where a user is, mobile networks offer wireless access. These networks may 

transmit and receive data utilising neighbour connectivity, and they are self-configurable. Sensors, mobile devices, routers, and 

many other tiny devices can be used to create this network. However, because these devices are small and unable to perform 

complex computations, the author of this paper uses 5G enabled UAV based community offloading, in which UAVs move to 

various positions and mobile devices offload or schedule tasks to the closest freestanding (UAV with less load) UAV. After 

receiving a job, the UAV will schedule it to be sent to a task processors or base station, which will process it and return the 

results to the UAV, which will then transmit it to a mobile device. 

 
Keyword-- NASH algorithm, multitasking, mobile edge computing, and unmanned aerial vehicles. 

 

I. Introduction 

The world has drastically changed as a result of the proliferation of smart gadgets, and cellular technologies are now 

widely used. Social networking sites and online streaming services have grown in popularity and use for people of all 

ages. Cisco projected in 2020 that by the end of 2021, cellular data traffic will have increased seven times (Cisco & 

Internet, 2020). The rise in data that followed has put a heavy pressure on mobile service providers. Cellular networks 

will becoming even more crowded without adequate safeguards for maintaining and processing such their workloads, 

which would lead to worse quality and lower download speeds. For this reason, mobile devices require more processing 

power. Additionally, as 5G technology  develops over time, a variety of services that need complex processing tasks—

tasks that the specified devices are not capable of handling—have been inspired. 

The idea of the metaverse, which has been called the mobile Internet's their [1], is becoming more and more well- liked. 

It is the Internet materialised, with a human-centered, immersive, and interconnected virtual environment that users may 

travel with virtual characters under their control [2]. Users may engage with the virtual environment in the metaverse 

by moving their bodies or making sounds, and they can take use of a wide range of human-centered virtual services for 

instance, people can employ technologies like virtual reality, augmented reality, and mixed reality to explore another 

dimension in the metaverse. Nonetheless, the salient feature of these innovations is their ability to produce pictures in a 

timely manner, so producing perceptual visuals in response to users' ideas. This necessitates devices to possess a high 

processing capacity and ample energy. The increasing advancement of technology connected to the metaverse and users' 

need for dynamic, real-time virtual world perception prevent standard wired devices from providing ubiquitous network 

connectivity across the metaverse. Instead, users may construct a dynamic, human-centric virtual environment that is 

aware of their requirements in real time by running metaverse programmes on their mobile devices [1]. For a more 

lifelike experience in the metaverse, each user creates his or her own image and communicates with other avatars 

and virtual items at any time and place. This naturally places a heavy burden on each terminal's processing power and 

battery life. 

Currently, mobile devices' computational power and battery life are constantly limited due to cost of production and 
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technological constraints [3]. Recent years have seen the rise of Mobile Edge Computing, also known as MEC, [4] as a 

viable option for real-time augmented and virtual video delivery over wireless networks and as a critical component 

for real-time rendering. 

It efficiently increases the processing capacity of mobile devices by transferring calculation tasks to nearby MEC servers 

[5]. Additionally, as Wireless Voltage Transfer (WPT) technology has advanced, mobile devices' energy limitations 

have decreased. By combining WPT and MEC, Wireless Power Mobile Electronics Computing (WPMEC) enhances 

the computing capability to serve the metaverse while reducing the impact on battery life [6]. The term "wireless 

powered metaverse paradigm" describes how WPMEC technology makes it simple to run human-centric programmes 

designed for the metaverse on mobile devices. 

Through process offloading, mobile edge computing, or MEC, is a potential approach that makes use of cloud servers 

set up to assist mobile devices. The original idea for edge computing, or cloudlet, was put out in 2009. Although 

cloudlets let mobile users access cloud services, they force users to switch between cellular and Wi-Fi networks. 

By leveraging the concept of an on-demand cloud, handheld devices can also be used to do activities locally. By 

combining the computing capacity of several user devices, it enables the processing of tasks. Specifically, shifting the 

information to an interface computer improves user experience and prolongs battery life. Cisco first proposed the concept 

of computation offloading in 2012. Consequently, processing tasks may be wirelessly transferred from any low-resource 

mobile device to higher-resource devices. The other machines transmit their results back to the portable devices after 

they have completed their tasks. Unfortunately, this technique still falls short of expectations because of the limitations 

of Bluetooth technology in mountainous and rural areas. Additionally, emergency response instances should always 

come first. Therefore, it is challenging to maintain energy economy and experience quality without sacrificing 

communication speed, even in the best of circumstances. 

 

This essay's remaining sections are organised as follows: In Section II, we offer pertinent literature; in Section III, 

we construct the system model and delineate the optimisation problem. In Section IV, the two-phase alternating 

optimisation approach is devised, and in Section V, its effectiveness is evaluated. Section VI finally concludes this 

endeavour. 

 

II. LITERATURE SURVEY 

The concept of computation offloading is quite popular, and several surveys have highlighted different facets of 

offloading in edge computing settings. The authors of Reference. [1] addressed how UAVs may be used as edge servers 

in offload and gave an overview of current developments, unresolved problems, and potential application possibilities of 

UAVs in MEC contexts. The writers of Ref.[2] provide a summary of a cutting-edge computational job offloading method 

by emphasising performance measures, including energy consumption reduction, to guarantee quality- of-service while 

implementing resource allocation protocols. In Ref., offloading according to certain application objectives was examined 

[4]. Based on previously published research, the authors there gave a thorough overview of the traffic and compute 

offloading duties. Ref examined methods for machine-learning computation offloading (Shakarami et al., 2020a). 

whereby the writers evaluated the methods, features, performance measures, strengths, and shortcomings of the employed 

methodologies against the literature. 

 

In contrast to such studies, offloading has been studied to overcome issues in dynamic situations (e.g., automotive). 

Using a classification of communication channels and design aims, recent experiments described in the published 

literature were summarised by Ref[6]. Ref's authors [5] examined fundamental models from the viewpoints of energy 

harvesting, computing, and communication. In Ref., an overview of recent advancements in machine-learning 

approaches was given [9]. The authors of Reference. [7] examined how an offloading system may adjust to enable 

the building of an even more reliable and scalable capability while maintaining the level of experience. The writers of 

Ref [8] paid close attention to the stochastic behaviours of offloading strategies made possible by variations in mobile 

applications. The authors talked about edge computing, fog, mobile cloud, and other related settings as well as stochastic 

offloading strategies. The paper's authors of Ref. [12] conducted a thorough assessment in which they examined current 

advancements in edge computing from the viewpoints of computation and architectural Offloading choices, which are 

based on allocation of resources and mobility management, were further examined. Ref. [13] looked at an unloading 

mechanism based on game  theory and a special ontology. There, key measurements, application situations, applicable 

techniques, and tools related to loading processes in a MEC environment were discussed by the authors. In the setting 

of channel access strategies, the authors of [14] provide a brief synopsis of the UAV-enabled MEC system and 

outline energy-efficient techniques for controlling resources and computation offloading on IoT devices. UAV-assisted 

transmission was not considered in this study. The authors of 

[15] offered a complete analysis of machine learning and deep analytics based methodologies in UAV-enabled 

MEC networking. This review, however, emphasises on artificial intelligence-based methods and ignores the commonly 

utilised optimisation techniques in UAV-MEC design. 

The aforementioned studies highlight the methods of computation offloading in a context of edge computing from 
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different angles. One of the main disadvantages of the typical MEC server is that its location typically remains the same 

[18] and it is unable to be moved to follow mobile users. In situations like these, unmanned aerial vehicles (UAVs) 

present a viable option since they may serve as a possible MEC server, offering resources for

 computingand communication in the event that a ground MEC network is either non-existent or has been devastated 

by a natural disaster. Owing to its mobility, quick execution, and low cost, UAVs may be easily utilised in emergency 

rescue missions, army surveillance, and arid locations. For this reason, a thorough analysis of the compute offloading 

strategies used in UAV- MEC networks is both very intriguing and crucial. 

 

III. SYSTEM MODEL 

This part presents the developed system model and formulates the challenge of maximising long-term computing 

efficiency. Because no unloading facility was available for any of the existing approaches, their throughput would 

decrease and their energy consumption would increase. Thus, the author of the proposal paper suggests using UAV 

connection to offload and schedule tasks to a powerful processing unit like a task processor. 

 

 
Fig 1: System Model 

The following modules are what we have combined to unload here. 

1) Trajectory: In the paper on trajectory, the machine learning method QLEARNING is discussed. This technique locates UAVs 

and mobile nodes, which might be useful in identifying nearby mobiles and grouping them into a single cluster. 

2) 5G Supported UAV Connectivity: In this study, communities are formed through the use of clusters. Mobile devices that are 

closer to one another are grouped together to form a single cluster, and then UAVs are allocated to each cluster. The UAV 

will be assigned to the cluster closest to it. 

3) Nash equilibrium task scheduling: To offload a job from any mobile device, we first generate a list of all UAVs that are 

accessible. Next, we use the NASH algorithm to pick the UAV that is closest to the mobile device, has the most available 

energy, and has the least delay. Thus, by using this technique, free UAVs will always be chosen, resulting in low latency, 

high throughput, and low energy consumption. 

Since we lack smartphones or unmanned aerial vehicles (UAVs), we conducted the project virtually, and the results of that 

simulation are the modules listed below. 

 

1) Create UAV Community: This module will be used to establish a network community. 

2) Determine Cluster Size: Using the size of the network, we will determine how many clusters are appropriate to split into groups, 

with one UAV being assigned to each group. 

3) Create Clusters: A group will be formed by the network depending on the number of clusters, and nearby mobile devices will 

be included in the same group or cluster. 

4) UAV Selection: We will assign UAVs to each unit or cluster using this module. 
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5) Offload Task to Computer using UAV: This module source will allow mobile to offload tasks. A free UAV will then be chosen 

using the NASH algorithm to offload tasks to the task processor and provide responses to the mobile device. 

6) Using this module, we will create an energy usage graph that compares suggested TDTS offloading methods with non-

offloading methods. 

7) Throughput Graph: This module will be used to display a throughput graph comparing suggested TDTS offloading methods 

with non-offloading methods. 

 

IV. ALGORITHM 

 
In this part, we provide a multitask-based, two-stage alternating optimisation technique that can successfully address the two 

aforementioned subproblems. 

 

A. QLEARNING 

 

An Off-Policy approach for Sequential Difference learning is termed Q-Learning. With sufficient instruction under any -soft policy, it 

can be shown that the approach converges to a near approximation of the action-value contour for any target policy with probability 

less than 1. Q-Learning finds the optimal path of action even when phases are selected using a more scientific or even random strategy. 

The procedural version of the algorithm is: 

 

 

 
 

           The following parameters are utilised for updating the Q-value: 

 

- The learning rate, which is set between 0 and 1, is one of the factors utilised in the Q-value updating process. Nothing is learnt 

if it is set to 0, as the Q-values cannot be changed. A high score, like 0.9, indicates that learning may happen rapidly. 

  - discount factor, with a range of 0 to 1. This simulates the idea that rewards in the future have less value than those in the present. 

In mathematical terms, the method can only converge if the discount factor is smaller than 0. 

 - the highest reward that may be obtained in the state that comes after the present one; that is, the reward for choosing the 

best course of action in that state. 

 
The following are the stages that this procedural technique may be converted into in plain English: 

 
1. Create the Q-values surface, Q(s, a), from scratch. 

2. Note the situation as it is, s. 

3. Using one of the actions selection rules (-soft, -greedy, or softmax) described above on the previous page, pick an action to perform 

a, for that state. 

4. Execute the action and note the new state, s', and the reward, r. 

5. Using the measured reward and the highest reward that may be earned in the future state, adjust the value of Q for the current state. 

The forumla and the previously mentioned settings are followed while upgrading. 

6. Once the terminal's state is achieved, set the state into the new state and continue. 

 
B. Nash equilibrium 

 
Each participant in a noncooperative action can optimise their outcome depending on the decisions made by the other participants, 

according to the idea of Nash equilibrium in game theory. The game is considered to have achieved its conclusion when no one feels 
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motivated to alter their own strategy, even if they're aware of the intentions of the other players. Nash equilibrium. 

 
1) The Equivalent Matrix Game and Nash Equilibrium 

 

 

 
Let Xi represent player I's pure strategy set in game Γ. X is used to denote ∏i ∈ IXi. In the game of resource allocation, 

 

 
 

 

Assume that si, or the mixed strategy, is a likelihood distribution on Xi for player i. 

 

 
 

Let S := ∏i ∈ ISi be the set of randomised- strategy profiles, and allow Si represent the set of combined approaches for player i. The 

anticipated value of player I's payout function for s ∈ S is 
 

 

Nevertheless, since interactions between players are pairwise, we may express πi(s) in a more straightforward manner as follows: 
 

 

For each ti ∈ Si, we let (s-i, ti) signify the randomized- strategy profiles for which the i-th element is ti and all other parts are as in s. 

Consequently, 
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C. Shortest Distance First: 

 

SDF typically refers to a strategy or algorithm that prioritizes tasks, movements, or routes based on minimizing the 

physical distance. This concept is commonly applied in various fields, such as logistics, robotics, and networking. In 

logistics and transportation, SDF might involve prioritizing delivery routes or scheduling transport vehicles to minimize 

the total travel distance. This helps in optimizing fuel efficiency, reducing travel time, and improving overall resource 

utilization. 

Particularly for mobile robots or drones, the SDF principle guides the planning of motion trajectories. The goal is to 

minimize the distance travelled by the robot while navigating through an environment, which is crucial for efficient and 

timely completion of tasks. 

In the context of task scheduling, SDF might be applied to prioritize the execution of tasks based on their physical 

proximity. This can be relevant in scenarios where completing tasks in close proximity to each other is more efficient, 

such as in manufacturing processes. 

In general, the "Shortest Distance First" approach is often associated with optimization strategies that aim to minimize 

the overall distance traveled or path taken, leading to resource-efficient and timely solutions. 

 

D. Trajectory Design and Task Scheduling Algorithm (TDTS): 

 

The existing non-offloading SDF technique, emphasizing the challenges or limitations related to throughput. TDTS to 

enhance throughput in a non-offloading SDF) context. 

 

TDTS schemes involve dividing time into discrete slots and allocating these slots to different communication channels 

or users. Each channel or user gets exclusive access to the communication medium during their assigned time slot. This 

type of approach is often used to manage the sharing of a communication medium efficiently. The total time frame is cyclic, 

and the cycle repeats. 

 

During their assigned time slot, a channel or user has exclusive access to the communication medium. They can transmit 

their data during this time without interference from other channels or users. Since each channel or user has a dedicated 

time slot, the chance of collisions (simultaneous transmissions) is reduced. Collision avoidance mechanisms may be 

implemented to handle potential conflicts, such as retransmission protocols. TDTS aims to improve the efficiency of 

communication by reducing collisions and allowing each channel/user to transmit without contention during their allocated 

time slot. 

 

Throughput is enhanced as multiple channels or users can share the same communication medium without interfering 

with each other. 

 
 

E. Cluster Algorithm 

 

When it comes to UAV offloading tasks to a community of ground-based devices, clustering algorithms play a crucial 

role in organizing and optimizing the communication and coordination between UAVs and the devices in the community. 

Clustering helps manage the workload efficiently and distribute tasks among UAVs and ground devices. 

 

Working 

 

• Devices in the community register themselves to the UAV network, providing information about their capabilities, available 

resources, and current workload. 

• UAVs are initialized with their communication range, available resources, and the types of tasks they can offload. Each 

UAV receives information about the tasks that need offloading. This information includes task types, computational 

requirements, and deadlines. 

• Group devices into clusters based on their geographical proximity to UAVs. This helps in minimizing communication 

latency and optimizing energy consumption for both UAVs and devices. 

• Distribute the tasks evenly among UAVs within a cluster to balance the computational load. This ensures that no UAV is 

overloaded while others have spare capacity. 

• Establish and maintain real-time communication links between UAVs and devices within each cluster. This is essential for 

task coordination, status updates, and dynamic adjustments based on changing conditions. 

• Periodically reassess the workload and resources in each cluster. If there are changes in task requirements or the availability 

of devices, dynamically reconfigure the clusters to adapt to the evolving environment. 

• Assign priorities to tasks based on their urgency, deadlines, and importance. Ensure that high-priority tasks receive 

appropriate resources and are offloaded promptly. 
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• Implement fault tolerance mechanisms to handle UAV or device failures. Reassign tasks to available resources and adjust 

the clusters accordingly. 

• Consider energy constraints for both UAVs and devices. Optimize the clustering and task assignment to minimize energy 

consumption, especially for UAVs with limited battery capacity. 

The effectiveness of the clustering algorithm depends on the specific requirements of the UAV-to-Community 

offloading scenario, including task characteristics, communication constraints, and the capabilities of UAVs and ground 

devices. The algorithm may need customization based on the unique aspects of the application domain. 

 

V. EXPERIMENT RESULTS 

 
Enter the number of nodes in the Num Nodes field below, and then click the "Generate UAV community" button to get 

the output shown below. 

After entering "Num Nodes" as 30, the simulation screen displayed red and blue circles, representing community 

members in the red circles and task processors in the blue circles. Click "Calculate Cluster Size" to organise all users 

into that number of clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same colour nodes in the screen below are in one cluster, and the other colour nodes are in a different cluster or community. 

Click on "UAV selection" to designate a node as a UAV with high energy and coverage of a greater number of nodes in the 

community. Each community will receive one UAV, and the output shown below will come from it. 

 
 

 

To offload the work and obtain the results below, choose source number 7 from the list then click the "Offload Task to Processors 

using UAV" button. 

Similar to the below screen, you may choose another source to offload tasks. In the screen below, user 7 is offloading a job to 

its group UAV 9, which is dumping to a task processor. 

 

           The work that MN13 is transferring to UAV 19 is then offloaded to the task processor. 
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Tasks are being offloaded by MN12 to its community unmanned aerial vehicle (UAV28), which is then offloaded to a 

task processor. Click the "Energy Consumption" graph to view the graph below. 

 

 

 

 

The y-axis in the energy consumption graph above shows the names of the algorithms, and the x-axis shows the amount 

of energy consumed. The proposed TDTS approach uses less energy than the current non-offloading technique. Click 

the "Throughput Graph" button to view the graph below. 
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The following throughput graph shows the number of packets sent on the x-axis, the throughput on the y-axis, the 

proposed TDTS throughput shown by the green line, and the current Non-offloading SDF approach represented by the 

blue line. The proposed TDTS technique achieved a high throughput in both cases. 

 

VI. CONCLUSIONS 

In this work, we carried out a computation offload in a MEC environment supported by UAVs. We categorised the 

existing offloading algorithms based on their two methods, Nash Equilibrium and Q-learning. Next, we conducted a 

comparison analysis of them based on their unique characteristics, advantages, and disadvantages. An UAV- enabled 

MEC server would be very helpful and easy to enhance their computing powers in locations where building an 

infrastructure is fairly difficult, and it should offer smooth connectivity in combat and disaster-prone areas. This study's 

comparisons allow for a better selection of offloading systems. We also discussed important takeaways and proposals for 

further study. Energy efficiency and UAV power are critical challenges.. Therefore, it is necessary to build an offloading 

strategy that takes user mobility and changeable network circumstances into account. We think that the results of this 

study will be useful in the future for designing and implementing effective offloading strategies for UAV–MEC systems. 
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