FEA AND DESIGN MODIFICATION OF SHREDDER BLADE USED FOR RECYCLING PLASTIC

Mr.Sudarshan B.Shinde¹, Prof.Dr.C.M.Sedani²

¹ Student M.E(Design), Mechanical Engineering, PVPIT-Pune, Maharashtra, India ² Principal/Guide, Mechanical Engineering, PVPIT-Pune, Maharashtra, India

ABSTRACT

A paper shredder is considered to be a mechanical machine that is used to cut paper into either strips or fine particles that portray no information that was written on the paper initially. Government establishments, big business holders, and private personalities use these shredders to abolish private, personal, or otherwise delicate and secret pamphlets. Privacy specialists frequently claim that individuals should shred their bills, tax papers, credit cards, and statements of their bank account, and other kinds of stuff that might be used by robs to commit deceit and theft. In this report, we are going to design a shredder blade and perform a FEA Static Structural analysis followed by topology optimization and Material comparison for low weight, durability, strength, span life and other stress factors, so that the blade can handle cutting force applied to it.

Keyword - Shredder Blade, FEA Static Structural Analysis, Topology Optimization, Material Comparison

1. INTRODUCTION

This research work is aimed at solving the problems of plastic wastes management in developing countries. In this study, we designed and constructed a plastic shredding machine. The machine consists of the following main components; hopper assembly, shredding chamber, drive shaft, frame, V-belts, and an electric motor. Although the form of the plastics was vastly different to their equivalent when it comes to mass recycling over large sizes, the energy difference highlights the potential environmental benefit of utilizing re-cyclites plastics where it can be pointed out that shredding machine is a feasible operation for recycling purposes.

Humans have always produced trash and disposed of it in some way so solid waste management is not a new issue. What have changed are the types and amounts of waste produced, the methods of disposal, and the human values and perceptions of what should be done with it. The applications of plastic materials and their composites are still growing rapidly due to their low cost and ease of manufacture. Therefore, high amount of waste plastic being accumulated which create big challenges for their disposal.

This research is motivated by concerns about rising global composite waste. Despite the developing composite recycling technology, environmental aspects, particularly the process energy demand of the recycling methods, has not been thoroughly addressed. This research aims to model energy demand of composite recycling processes while considering the quality and characteristics of the re-cyclites. The outcomes are to establish efficient use of energy demand and to enable assessment of a circular economy for composite materials

1.1 Aim and Purpose

A shredding machine Blade is designed to reduce large solid material objects into a smaller volume, or smaller pieces. Shredding machines are usually used to reduce the size and shape of materials so they can be efficiently used for the purpose intended to. Shredding just like crushing can be defined as the process of transferring a force

amplified by mechanical advantage through a material made of molecules that bond together more strongly, and resist deformation more, than those in the material being crushed do. The shredding materials must possess a better strength and toughness than the plastic materials.

This study's aim to investigate the effect of operational parameters on process energy demand and quality of recyclates in mechanical recycling of plastics. Three control factors which will be investigated are blade, material thickness and material size. Performance of two different granulator technologies will be also compared. The vision is to develop the knowledge base for selecting optimum parameters to minimise energy footprint and to predict recyclites quality

1.2 Problem Statement

Paper shredders are great machines that can help keep everyone's private information under wraps. However, it doesn't matter if you own a personal-sized device or a large departmental one, you probably will experience some problems with it at some point. Here are five common problems and some ideas on how to fix them.

There may be chance of a paper jam. Even if you have a jam free shredder, you might still have to deal with a paper jam at some point, depending on your usage so this need to understand the cutting force for the blade.

Most jams can be cleared up by simply running the machine in reverse and removing the paper.

If uneven force is applied to paper blade then it may loss its balance, shredder makes too much noise. Some of the units out there are noisy from the get-go.

2. Design Process

When a new product or their elements are to be designed, a designer may proceed as follows:

- Make a detailed statement of the problems completely; it should be as clear as possible & also of the purpose for which the machine is to be designed.
- **4** Make selection of the possible mechanism which will give the desire motion.
- 4 Determine the forces acting on it and energy transmitted by each element of the machine.
- 4 Select the material best suited for each element of the machine.
- Determine the allowable or design stress considering all the factors that affect the strength of the machine part.
- Identify the importance and necessary and application of the machine Problems with existing requirement of the machine productivity and demand.

In this research work each critical part of the machine will be conceptually set up and this choice will be based on criteria design criteria which will be used to produce a detailed design of machine.

The quality that makes a good design is based on the developed of a good philosophy of design. The following consideration was adopted in this design:

- Minimum vibration level
- ✤ Lower overall cost
- Machine longer and extended product life
- Good and attractive appearance of machine assembly- color and styling.
- Design for easy manufacturing
- Design for easy maintenance and assembly
- Design for high efficiency.

Facilities Required

- 1. Catia v5
 - Surface modeling
 - Part design

- Drafting
- 2. FEA Ansys Workbench R1 2020
 - a. Static Structural Analysis
 - b. Topology Optimization
 - c. Vibrational Modal analysis
 - d. Material Comparison
- 3. Process in Ansys
 - a. Stress, strain & deformation factors with fatigue assessment on Structural steel.
 - b. Mass reduction on topology optimization
 - c. Frequency generation Modal analysis on 7 modes
 - d. Comparing for different Material grades for strength, weight and etc.

PROPERTY	METRIC	UNITS	ENGLISH	UNITS
General				
Density	952 - 965	kg/m^3	00.344 - 0.0349	lb/ft^3
Mechanical				
Yield Strength	2.62e7 - 3.1e7	Ра	3.8 - 4.5	ksi
Tensile Strength	2.21e7 - 3.1e7	Ра	3.21 - 4.5	ksi
Elongation	11.2 - 12.9	% strain	1.12e3 - 1.29e3 -	% strain
Hardness (Vickers)	7.75e7 - 9.71e7 -	Pa	7.9 - 9.9	HV
Impact Strength (un- notched)	1.9e5 - 2e5	J/m^2	90.4 - 95.2	ft.lbf/in^2
Fracture Toughness	1.52e6 - 1.82e6	Pa/m^0.5	1.38 - 1.66	ksi/in^0.5
Young's Modulus	1.07e9 - 1.09e9	Pa	0.155 - 0.158	10^6 psi
Thermal				
Max Service Temperature	113 - 129	°C	235 - 264	°F
Melting Temperature	130 - 137	°C	266 - 279	°F
Insulator or Conductor	Insulator		Insulator	
Specific Heat Capability	1.75e3 - 1.81e3	J/kg °C	0.418 - 0.432	BTU/lb. °F
Thermal Expansion Coefficient	1.06e-4 - 1.98e-4	strain/°C	59 - 110	µstrain/°F

Table 5.1 properties of cutting waste

2.1 Equations required to calculate the cutting force for blade.

Breaking strength can be assumed as the ultimate strength multiplied by a designer factor of safety.

Breaking strength of PET plastic material: τ (br)" plastic ")=Fos*ultimate strength of material The cross-sectional area of the material to be cut is A=w^* ts Where: W= Width of cutting blade edge, t= Thickness of the plastic material The cutting force required for cutting the plastic. F c= τ (br)plastic)*A Fos=2 ultimate strength of material to be cut=45Mpa Assume thickness to cut as 1-5 mm =5mm (اتھ، τ (br)" plastic ")=2*45=90Mpa Form a trail & error method select 2cm to be as width of the blade 20*5 100 mm^2 А _ = F c= τ (br)plastic)*A =90*1009000 N _

9000 N of force to be applied on the blade and also to optimize the blade for its yield strength.

2.2 Material

1 A2 Tool Steel

Properties	Metric	Imperial	
Density	7.86 g/cm ³	0.284 lb/in ³	
Melting point	1424°C	2595°F	

Mechanical Properties

The mechanical properties of A2 tool steels are displayed in the following table.

Properties	Metric	Imperial

Hardness, Rockwell C (as air-hardened (63-65 HRC average), 60-62 HRC at 205°C, 59-61 HRC at 260°C, 58-60 HRC at 315°C, 57-59 HRC at 370°C64 and 425°C and 480°C, 56-58 HRC at 540°C, 50-52 HRC at 595°C, 42-44 HRC at 650°C)

64

Bulk modulus (typical for steels)	140 GPa	20300 ksi
Machinability (based on carbon tool steel)	65%	65%

Shear modulus	78.0 GPa	11300 ksi
Poisson's ratio	0.27-0.30	0.27-0.30
Elastic modulus	190-210 GPa	27557-30457 ksi

Table 5.2 Properties of A2 tool Steel

	10			
Material 2 Stainless steel				
Mechanical properties for 304	stainless steel alloys - pl	ate from 8 - 75 mm thick	Conversion of the second s	
Grade	304	304L	304H	
Tensile Strength (MPa)	520 - 720	500 - 700	-	
Proof Stress (MPa)	210 Min	200 Min	-	
Elongation A5	45 Min %	45 Min %		
Property		Value		
Density		8.00 g/cm^3		
Melting Point		1450 °C		
Modulus of Elasticity		193 GPa		
Electrical Resistivity		0.72 x 10 ⁻⁶ Ω.m		
Thermal Conductivity		16.2 W/m.K		
Thermal Expansion		17.2 x 10 ⁻⁶ /K		
50	Table 5 2 Matanial and	manting of 204 Stainlags St	1	

 Table 5.3 Material properties of 304 Stainless Steel

4. Analysis

Figure 6.2 Geometry Importation

Bounding Box	
Length X	20. mm
Length Y	112.5 mm

Length Z	109.95 mm
Properties	
Volume	1.422e+005 mm ³
Mass	1.1163 kg
Scale Factor Value	1.

Table geometry properties

Material – Structural Steel

Structural Steel	
tigue Data at zero mean stress comes from 1998 ASME BPV C	Inde, Section 8, Div 2, Table 5-110.1
lensity	7.85e-06 kg/mm ²
tructural	~
Isotropic Elasticity	
lerive from	Young's Modulus and Poisson's Ratio
oung's Modulus	2e+05 MPa
oisson's Ratio	0.3
ulk Modulus	1.6667e+05 MPa
hear Modulus	76923 MPa
otropic Secant Coefficient of Thermal Expansion	1.2e-05 1/°C
ompressive Ultimate Strength	0 MPa
compressive Vield Strength	250 MP#
train-Life Parameters	-5.6e-1 -5.4e+0 0.0e+0 1.0e+1
-N Curve	3 5e+0 0 0 0 0 0 0 0 0 0 0 0 0 0
ensile Ultimate Strength	460 MPa
ensile Yield Strength	250 MPa

Table 6.1 Material Properties Structural steel

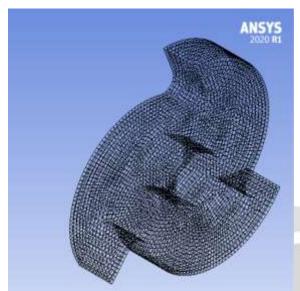


Figure 6.3 Mesh Creation on 3D part body

Definition				
Suppressed	No	1	100	1
Method	Auto	matio		
Element Orde	r Use	Globa	al Setting	- 11
Туре		1.1		Element Size
Element Size	1.00	1		2.0 mm
Advanced				
Defeature Siz	e		10	Default
Behavior				Soft
	Stati	stics		
	Node	es	107051	
	Elem	ents	24010	1000
Configuration	A.\			1
ion		1.16		1
Object Name	e	Rote	tional Ve	locity
State		Full	y Defined	
Scope				
Scoping Me	thod	Geo	metry Sel	ection
Geometry		All	Bodies	
Definition				
Define By		Con	ponents	
Coordinate S	System	Glol	oal Coord	inate System
X Compone	nt	50. I	RPM (ran	nped)
Y Compone			PM (ram	-
Z Componen			PM (ram	
undary Condition				

Table 6.3 boundary Condition

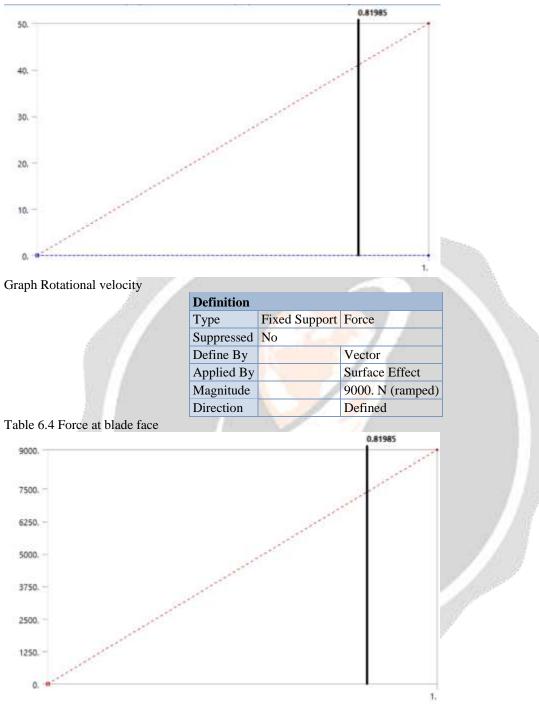
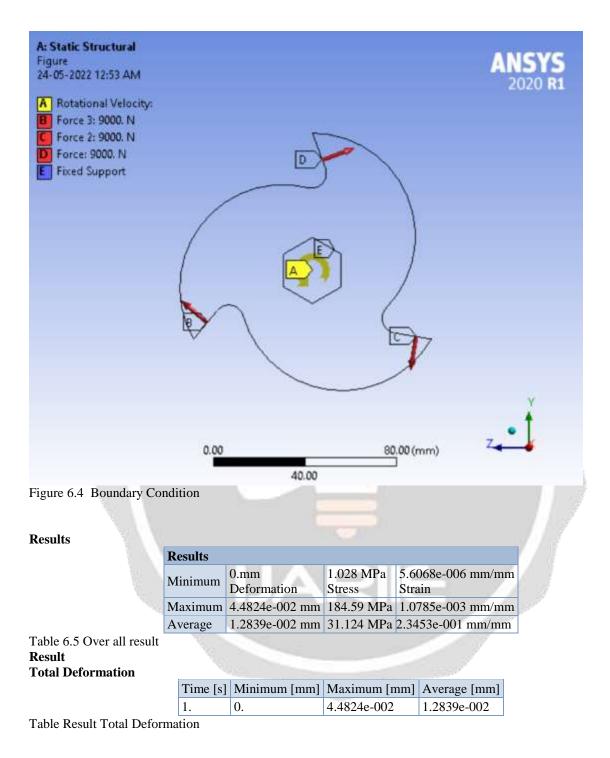



Figure Force

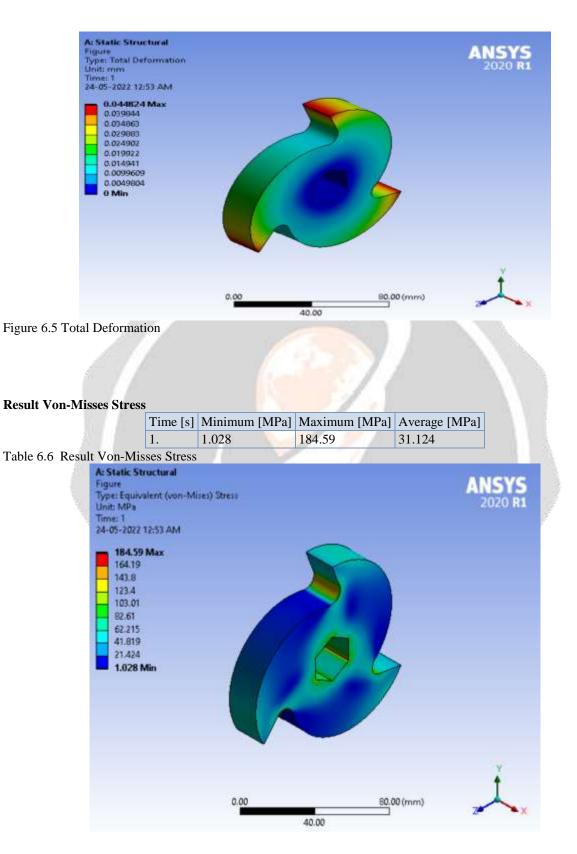
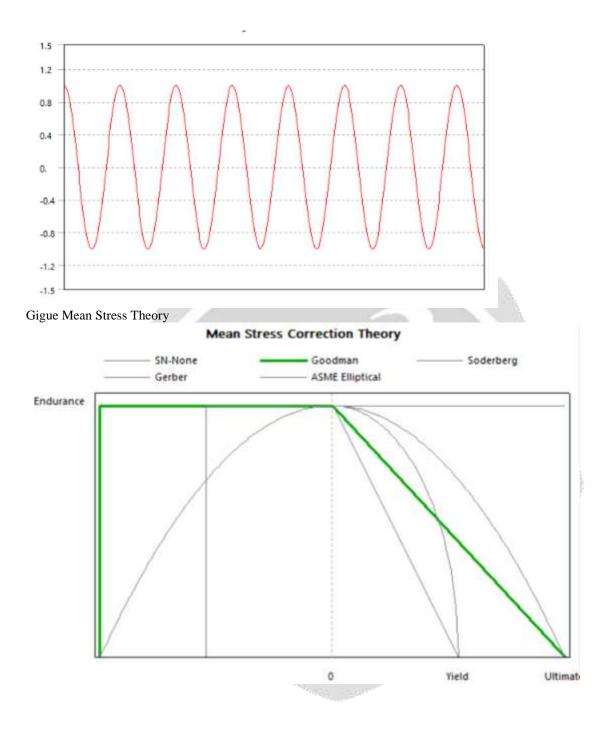
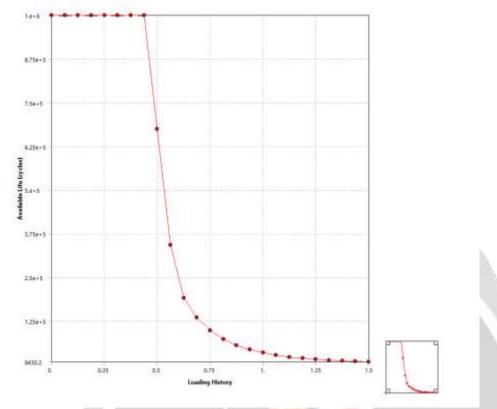



Figure 6.6 Result Von-Misses Stress Result Von-Misses Strain


				Average [mm/mm]
	1.	5.6068e-006	1.0785e-003	1.5637e-004
6.7 Result Von	1-MISSES S	otrain		
tatic Structural				
ire	an and a state			ANS 202
e: Equivalent Elas t: mm/mm	stic Strain			202
e:1				
05-2022 12:53 AN	4			
0.0010785 Max	¢	<		
0.00095933				
0.00084011				
0.0007209				
0.00060168				
0.00048247				
0.00036325			-	
0.00024404				
0.00012482 5.6068e-6 Min		a familie a		
e 6 7 Decult Ve	n Misson			Y †
e 6.7 Result Vo				Ť
e 6.7 Result Vo		6.8 Fatigue Factor		Ť
e 6.7 Result Vo			Fully Reversed	Ť
e 6.7 Result Vo		e 6.8 Fatigue Factor Loading	Fully Reversed 1.	¥
e 6.7 Result Vo		e 6.8 Fatigue Factor Loading Type	the second se	
e 6.7 Result Vo		6.8 Fatigue Factor Loading Type Scale Factor	the second se	
e 6.7 Result Vo		e 6.8 Fatigue Factor Loading Type Scale Factor Definition	1.	
e 6.7 Result Vo		 6.8 Fatigue Factor Loading Type Scale Factor Definition Display Time Options Analysis Type 	1. End Time Stress Life	
e 6.7 Result Vo		 6.8 Fatigue Factor Loading Type Scale Factor Definition Display Time Options 	1. End Time Stress Life	
e 6.7 Result Vo		 6.8 Fatigue Factor Loading Type Scale Factor Definition Display Time Options Analysis Type 	1. End Time Stress Life ory Goodman	Mises)
e 6.7 Result Vo		 6.8 Fatigue Factor Loading Type Scale Factor Definition Display Time Options Analysis Type Mean Stress The Stress Component 	1. End Time Stress Life ory Goodman	Y Mises)
e 6.7 Result Vo		 6.8 Fatigue Factor Loading Type Scale Factor Definition Display Time Options Analysis Type Mean Stress The 	1. End Time Stress Life ory Goodman	Mises)

Object Name	Life	Damage	Safety Factor	Biaxiality Indication
State	Solved			
Scope				

Scoping Method	Geometry Selection			
	All Bodies			
Geometry	All Bodies			
Definition			0.0	1
Туре	Life	Damage	Safety Factor	Biaxiality Indication
Identifier				
Suppressed	No			
Design Life		1.e+009 cycles		
Integration Point	Results			
Average Across Bodies	No			
Results				
Minimum	34402 cycles		0.46698	-1.
Minimum Occurs On	Blade design- FreeParts PartBody		Blade desig	n-FreeParts PartBody
Maximum		29068		0.96613
Maximum Occurs On		Blade design- FreeParts PartBody		Blade design- FreeParts PartBody
Average		1000	0	-0.40553
Table 6.9 Overall I	Fatigue Results			
Las	0	Denage		
At Shalk Streeteral	ANS	A Static Structural		ANSYS
Topic Life 24 dt 2012 produces	2020	11 Ja-61-322 En ta ana		2000 R1
Est Max EstTab		2006 Max 1990		
4.7285v1 3.2523v5				
1,15665		- 13/M7 - 3454		
1.538145	1		4	
	1.5-	- 345 - 4507.5 - 407 - 5094.7 - 2194.5		
1.518145 1.057945 72740			3	
1.53843 1.35365 7340 5004	10 20 (mm)	- 3654 - 50113 - 50147 - 50147 - 20143 - 20143	2,00or	n , Ť,
1.53843 1.35365 7340 5004	1000 × 1000	- 3654 - 50113 - 50147 - 50147 - 20143 - 20143	3 3	m , Ť.
1.539145 1.539145 173925 50094 34492 Min. 84927 Min.	10.00 (mm)	969 969 987 969 987 969 987 969 989 969 198 198 199 969 199 969 Benefally Industion 0.00	20.00cm	ni V
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at	1000 (rest)		2000 8.00	
1.53864 1.53865 17/Mi 5004 34402 Min Safety Fector	RDR(mm)	MSB Mar DSB MA	200y	
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at		See State States		
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at		• 969 • 969 </td <td>2000 700 2000</td> <td></td>	2000 700 2000	
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at	10 30 (mm)	• 969 • 969 • 970 • 970	2000 0.00 200	
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at	2005(non) 2005 2006 2006 2006		200% 7.00	
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at		3651 3651 3671 3671 3671 21143 11421 14921 1000 Mo. 0.02 Statistic Industries 0.02		
1.53964 1.53964 17395 5004 34492 Min Sefery Forme A Stark Structure at Linkh Stark Structure at		Sector Market Sector		ANSYS
1.5181e3 1.5181	ANSI ANSI	Sector Market Sector		ANSYS

Figure 6.8 a. Life b. Damage c. Safety Factor d. Biaxiality Indication.

Graph Fatigue Sensitivity

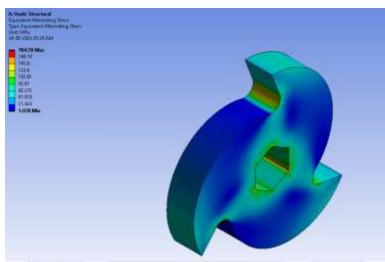

Alternating Stress MPa	Cycles	Mean Stress MPa
3999	10	0
2827	20	0
1896	50	0
1413	100	0
1069	200	0
441	2000	0
262	10000	0
214	20000	0
138	1.e+005	0
114	2.e+005	0
86.2	1.e+006	0

TABLE 33

Table Sn-Curve of Material

214	20000	0
138	1.e+005	0

Table Oure alternative stress

Fatigue alternative stress

Discussion

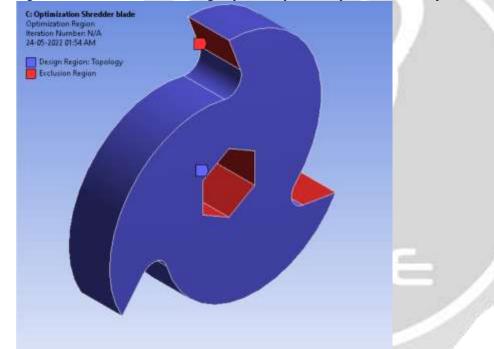
The designed shredder blade was analyzed using Static Structural analysis for calculated boundary condition 9000 N load on blade face to cut the plastic of 45 Mpa tensile strength with an factor of safety of 2.

But the obtained safety is less then the proposed safety so, in next procedure optimization will be carried out to reduce stress factors from the blade by redesigning the part to the absolute one by trying to maintain a minimum mass increment in the part body.

2nd iteration Topology Optimization

Topology optimization generates the optimal shape of a mechanical structure. Given a predefined domain in the 2D/3D space with boundary conditions and external loads, the intention is to distribute a percentage of the initial mass on the given domain such that a global measure takes a minimum. Without any further decisions and guidance of the user, the method will form the structural shape thus providing a first idea of an efficient geometry. The design space is discretized by the finite element method to represent the material distribution and at the same time the structural behavior. Therefore, lesser deflections are produced by more material. So, the optimization constraint is the volume of the material. Integration of the selection field over the volume can be done to obtain the total utilized material volume.

Topology optimization can be implemented through the use of finite element methods for the analysis and optimization techniques based on Homogenization method, Optimality criteria method, level set, Moving asymptotes, Genetic algorithms. A brief discussion on these methods is given below.

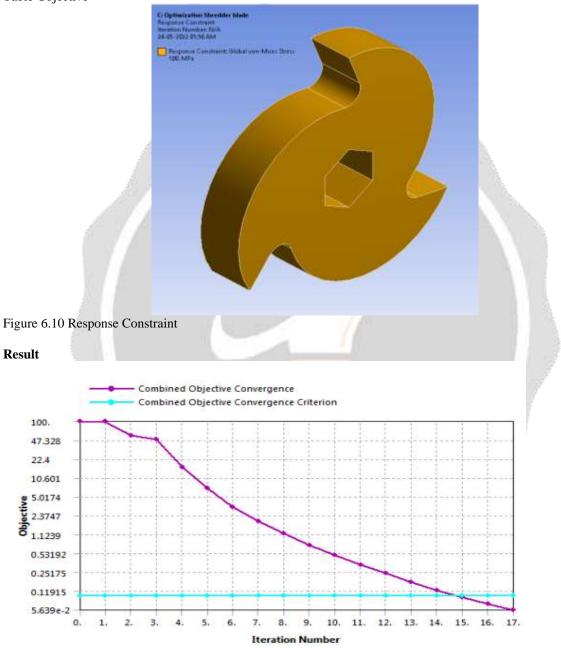

Procedure

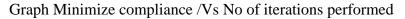
1. To simulate a part under topology formation, it must be simulated with one of the main modules of system like static, transient, Dynamic, CFD, Model or IC engines etc.

2. After the main module boundary processing a topology optimization module or scope is combined with the static structural analysis, results section from static are targeted into the optimization and upon the requirement we can optimize the part for required constraints mode like percentage of reduction of material from part stress based, strain based, vibrational based and mass based.

etails of "Analysis Settings"	- 4 🗆 ×	
Definition		
Maximum Number Of Iterations	500.	
Minimum Normalized Density	1.e-003	
Convergence Accuracy	0.1%	
Penalty Factor (Stiffness)	3.	
Region of Manufacturing Constraint	Include Exclusions	
Region of Min Member Size	Exclude Exclusions	
Region of AM Overhang Constraint	Exclude Exclusions	
Solver Controls		
Solver Type	Program Controlled	
Output Controls	10 Carlos	
Store Results At	All Iterations	
Analysis Data Management		
Solver Files Directory	D:\Mech p\sudarshan sir blad analysis\Analysi	
Future Analysis	None	
Scratch Solver Files Directory		
Save MAPDL db	No	
Delete Unneeded Files	Yes	
Solver Units	Active System	
Solver Unit System	nmm	
Max Num Of Intermediate Files	All Iterations	

Figure number of iterations, Convergency accuracy & density of solution for optimization




Figure 6.9 Region of optimization

ation	
Object Name	Response Constraint
State	Fully Defined
Scope	
Scoping Method	Optimization Region
Optimization Region Selection	Optimization Region
Definition	
Туре	Response Constraint
Response	Global von-Mises Stress
Maximum	100. MPa
Environment Selection	All Static Structural
Suppressed	No

Response Type	Goal	Criterio n	Formulatio n	Environmen t Name	Weigh t	Multipl e Sets	Star t Step	End Ste p	Ste p		End Mod e	Mod e
Complianc e	Minimiz e	N/A	Program Controlled	Static Structural	N/A	Enabled	1	1	1	N/A	N/A	N/A

Table Objective

After optimization

Redesigned part with minimized material condition & equalized strength condition.

Figure 6.11 redesigned part Weight of the geometry after Topology	gy optimization at 100 MPa Stress Retention Bounding Box	
	Length X 25. mm	
	Length Y 112.5 mm	
	Length Z 109.95 mm	
	Properties	6
		C. C.

In next iteration let us see how much stress has been reduced from the blade part body with mass increment of optimized part.

Iteration 3 Geometry, Mesh & Boundary Condition.

In this Iteration Same Boundary Condition is Applied to know the difference after the optimization for stress reduction.

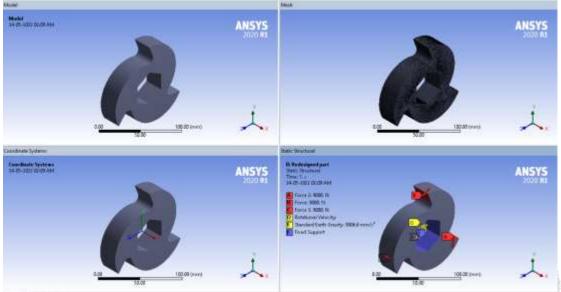


Figure 6.12 a. Geometry Importation b. Mesh Generation c. Co-Ordinate System d. Boundary Condition.

Results

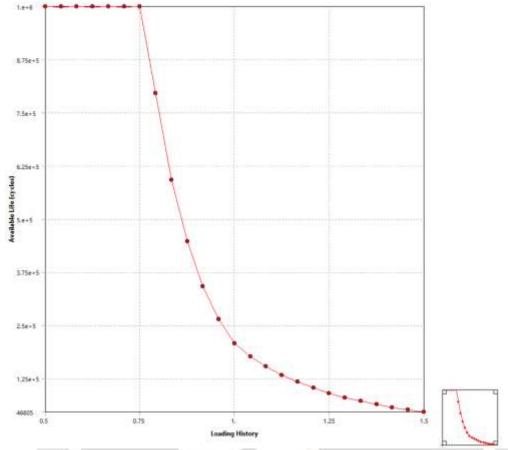

0. mm	0.39824 MPa	2.4609e-006 mm/mm
Total Deformation	Stress	Strain
		5.6643e-004 mm/mm
4.2803e-003 mm	21.148 MPa	1.0614e-004 mm/mm
	Total Deformation 2.5015e-002 mm	Total DeformationStress2.5015e-002 mm113.28 MPa

Table Overall Results Fatigue Result

Fatigue Result	100	Sector Se				
Object Name	Safety Factor	Life	Damage	Biaxiality Indication	Equivalent Stress	Alternating
State	Solved					
Scope						
Scoping Method	Geometry Sel	ection				
Geometry	All Bodies					
Definition						
Design Life	1.e+009 cycles		1.e+009 cycles			
Туре	Safety Factor	Life	Damage	Biaxiality Indication	Equivalent Stress	Alternating
Identifier		·	•	·		
Suppressed	No					

Integration Point Re	esults				
Average Across Bodies	No				
Results					
Minimum	0.76091	2.0738e+005 cycles		-0.99999	0.39824 MPa
Maximum		•	4822.1	0.99054	113.28 MPa
Average				-0.37431	21.148 MPa
Total Selectorypine		Table 6.12 Fati	gue Overall Re	esults	
11 Mark Segment part 1 Trans Defensions Mark Toda (Carlowenning) Mark Toda Mark Toda M			B. Backsigned guet Representative Control Reveau The Research Market Control Reveau R	ß	
regulationed States 16 Distribution of part 17 States and Wards 16 Distribution of part 16 Distribution of part 16 Distribution 16 Distribution 16 Distribution 17 Distr			144 144 Advision of good 144 144 Advision of good 144 Advision of good 144 Advision of good 144 Advision 144 Advision 14		
25111	Figu	e a. Total Deforma	tion. b. Strain o	c. Stress d. Life	
Safety, Factors 18. Nachteringweit genef Safety, Factors Types: District, Factors 24. Or 2011 (Nach Anni 19. The Safety Safety 19. The Safety Safety Safety 19. The Safety Safety Safety 19. The Safety Safety 19. The Safety Safety Safety Safety		ANSYS 2000 HI 1800 HI	Binney B. Rockstywell per Sources Topic Learney al-al-alogical per al-al-alogical alogical		
Exactly InScience R References Very Ramming Action 34 (5) - State State Action 2 - State 2 - S	Å	ANSYS	Reproduct. Although by Date II. Bookstage of your Provide Distances of your Start 1997. Start 1997. Star		ANSYS
	100	<u>10</u> 22 mm	- 0. 29624 Min	0.00	

Figure a. Safety Factor b. Damage c. Biaxiality Indication d. alternative stress

Graph Fatigue Sensitivity

Alternating Stress MPa	Cycles	Mean Stress MPa
3999	10	0
2827	20	0
1896	50	0
1413	100	0
1069	200	0
441	2000	0
262	10000	0
214	20000	0
138	1.e+005	0
114	2.e+005	0
86.2	1.e+006	

Table SN- Curve

114	2.e+005	0
86.2	1.e+006	0

Our Alternative strength

Discussion

Before optimization mass of the part body	=	1.1163 Kg
After Optimization mass of the part body	=	1.2296 Kg

Average	=	0.113grms of we	hight has been Increased &
Alternative stress Before optimization	ation mas	ss of the part body	= 184.59 MPa
Alternative stress After optimizat	ion mass	of the part body	= 113.28 MPa

- Hence the part body optimized was successfully designed to reduce the stress factor only by increasing the mass to a 113 grms.
- The part body with optimized parameter will be feasible to fabricate then the parent section.
- In next iteration two materials will be compared with the optimized part body, to know variation of strength with respect to material physical property.

Iteration 4 Material Comparison Material 1 A2 Tool Steel

Bounding Box	
Length X	25. mm
Length Y	112.5 mm
Length Z	109.95 mm
Properties	
Volume	1.5664e+005 mm ³
Mass	1.2312 kg
Scale Factor Value	1.

Table geometry property

Results					
Minimum	0. mm Deformation	0.4477 MPa	2.3553e-006 mm/mm		
Minimum	Deformation	Stress	Strain		
Maximum	2.3744e-002 mm	112.86 MPa	5.3744e-004 mm/mm		
Average	4.0316e-003 mm	21.159 MPa	1.0114e-004 mm/mm		

Table Overall Result

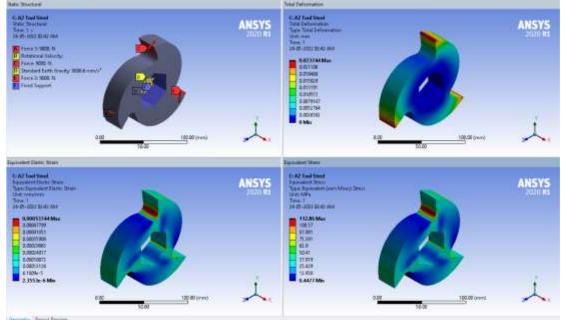


Figure a. Boundary Condition b. Total Deformation c. Strain d. Stress Alternative stress = 112.86

114	2.e+005	0
86.2	1.e+006	0

Our Alternative strength

Material 2 Stainless steel

	Bounding Box	
	Length X	25. mm
	Length Y	112.5 mm
	Length Z	109.95 mm
	Pro	perties
	Volume	1.5664e+005 mm ³
	Mass	1.2531 kg
	Scale Factor Valu	le 1.
	Table geor	metry property
	R	esults
um	0. mm 0.	.46241 MPa 2.8672e-00

Minimum	0. mm Deformation	0.46241 MPa Stress	2.8672e-006 mm/mm Strain	
Maximum	2.5949e-002 mm	113.45 MPa	5.8781e-004 mm/mm	
Average	4.4514e-003 mm	21.144 MPa	1.0998e-004 mm/mm	
Table Overall Result				

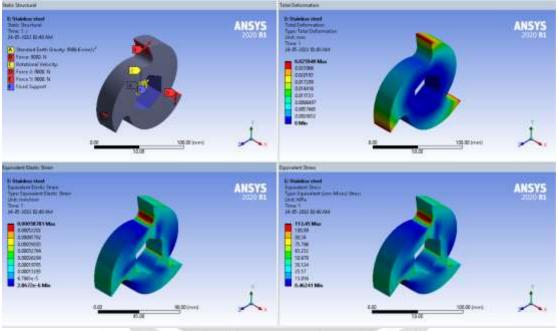


Figure a. Boundary Condition b. Total Deformation c. Strain d. Stress Alternative stress = 113.45 Mpa

 114
 2.e+005
 0

 86.2
 1.e+006
 0

 Our Alternative strength

4. CONCLUSIONS

FEA Static Structural Analysis had been successfully conducted on the Engine Mount bracket for the self-load condition, to investigate the stress concentration factor & vibrational modes of frequency for a defined boundary condition. Finally, all the results were observed and noted down.

In first iteration the proposed modal was solved for the Static condition, stress and deformation factors were more so on the Blade for an applied boundary Condition, so optimization strategy was used to reduce the Stress and also to maintain equalized Mass.

After 1st optimization redesign was made, by Editing the geometry and then solved for the same. This time deformation and stress factor were brought to minimum by conducting topology method.

Material Comparison For final designed part of Blade, Material comparison was Made to investigate the stress factors for A2 Tool steel & Stainless-steel Alloy, Hence the solution was optimum as expected.

The following result table explains the FEA modulation for designed, optimized part of engine mount bracket.

Sl No	Material	Type of	Deformation	Strain	Stress in	Mass of
	E. M.	State	In mm	1	MPa	part body in Kg
1.	Structural Steel	Static Structural Analysis	0.00482	1.07e-3	184.59	1.1163
2.	Structural steel	After Redesign part	0.002501	5.66e-4	113.28	1.2296
3.	A2 tool Steel	After Redesign part	0.002374	5.373-4	112.86	1.2312
4.	Stain-less steel	After Redesign part	0.002549	5.87e-4	113.45	1.2531

Table of Result

Table 7.1 overall result column

Structural steel is low cost, high strength material for cutting plastics with the shredder machine.

6. REFERENCES

- [1]. Joseph Y. Ko, 2002, "Paper Shredding Device", US 6390397 B1.
- [2]. Frank Chang, 2000, "Blade Assembly For Paper Shredder", US 6089482, BO2C 18/06, BO2C 18/18.
- [3]. Gu-Ming Zeng, 2006, "Blade of Paper Shredder", US 2008/0040934A1.
- [4]. Li-Ming Wu Huang, 2002, Taipei (TW), "Blade Of Paper Shredder", 6390400B1.
- [5]. Ming-Hui Ho, 2003, Taipei Shein, "Blade Of Paper Shredder", 6513740B2.
- [6]. S Nithyananth, Nithin Mathew, Libin Samuel, S Suraj, 2014, "Design Of Waste Shredder Machine", ISSN: 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.487-491.
- [7]. Emily Lo, 2010, Taipei Shein (TW), "Paper Shredder Blade", 7748656B1.

- [8]. Tsai, 2000, Taiwan, "Dual Function Shredder", 6065696, App. No.-09/320948.
- [9]. Bruce R. Kroger, Raymond R. Ferriss, 2001, "Paper Shredder Shaft", 6260780B1.
- [10]. Frank Chang, 2001, Taipei, "Gear Protection Device Of A Paper", 6325309B1.
- [11]. Emily Lo, 2008, Taipei Shiepei (TW), "Blade For Paper Shredder Cutting Tool", 7328867B1.
- [12]. Simon Hunag, 2006, San Chung (TW), "Elliptical Acetabuliform Blade For Shredder", 6981667B2, App. No. 10/682198.
- [13]. Frank Chang, 2005, Taipei (TW), "Linkage Mechanism Of Paper Cut And Antiblock Of Double Duty Shredder", 6966513B2.

