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Abstract  

The UN has estimated that 24 million babies were born in India in 2017 and 35,000 mothers died during or shortly after 

birth, with MMR at 145 per 100,000 live births, or 12% of parental deaths worldwide. Classification of fetal health is an 

important aspect of child care and can help prevent negative consequences. Cardiotocography (CTG) is a method often used 

to monitor fetal health, but its interpretation can be subjective and inaccurate. In recent years, machine learning 

methodologies and techniques have been proposed as a solution for improvement in the accuracy of CTG-based classification 

of fetus. In this study, we developed a classifier that automatically predicts fetal health using different learning machines. We 

used a database of CTG data from the University of California, Irvine's Machine Learning Repository containing 2126 

subjects and 21 features, including 1655 healthy subjects, 295 unhealthy subjects and pathologically diseased there are 176 

subjects. The proposed model has the potential to improve the accuracy and purpose of CTG-based fetal health classification, 

leading to better prenatal care and better outcomes for mothers and foetuses. As a comparison, the best model for prediction 

is random forest with 96% accuracy. 

 
 

 I. INTRODUCTION  

The Government of India has signed on to the United Nations (UN) Sustainable Development Goals (SDGs) reaching the 

maternal mortality rate (MMR) target of less than 70 deaths per 100,000 children born by 2030. This requires reliable 

measurement of maternal deaths and conditions and an understanding of the root causes of these deaths at the local level. Like 

many countries with a high maternal mortality rate, India recorded only a few births, deaths and significant events. Parental 

deaths occur concentrated in rural areas and are the least likely to be recorded in the country. However, India already has a 

very successful Registration System (SRS) to track births and deaths, including over 1 million national representatives over 50 

years. 

 

The UN has estimated that around 24 million babies were born in India in 2017, and about 35,000 mothers died during or 

shortly after birth, with the MMR of 145 per 100,000 live births. This is 12% of worldwide maternal deaths. According to the 

World Health Organization (WHO), the female mortality rate in the world fell from 342 in 2000 to 211 in 2017, reducing 

global maternal deaths from 451,000 to 295,000. About 40% of this decline is due to lower rates of maternal mortality in 

India. 

 

Pregnancy can be complicated by the need for additional procedures to assess fetal health. These conditions include the 

mother's medical problems that can affect the fetus, pregnancy-specific problems, and defect or abnormality in birth that can 

affect the health of the fetus. Maternal medical problems associated with fetal risk include essential hypertension, 

preeclampsia, kidney and autoimmune diseases, maternal diabetes, and thyroid disease. Other conditions that pose greater 

risks to the health of the fetus during pregnancy include prolonged pregnancy, reduced fetal growth, vaginal bleeding and 

elongation of the membrane. These risks include neurodevelopmental issues such as brain malformations, developmental 

delays, and hearing and vision loss in infants. 
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Fetal health monitoring is a critical aspect of prenatal care that involves assessing the well-being of the developing fetus 

during pregnancy. One method that is used method for monitoring the fetal health is cardiotocography (CTG), which records 

the fetal heart rate and uterine contractions over time. CTG is a non-invasive and widely available technique that can provide 

important information on fetal health, such as fetal distress or hypoxia, which may cause to adverse birth outcomes if left 

untreated. 

 

However, the interpretation of CTG can be subjective and prone to errors, which can result in unnecessary interventions or 

missed cases of fetal distress. The subjective nature of CTG interpretation is due in part to the complex and dynamic nature of 

the fetal heart rate pattern, which can vary greatly depending on fetal age, activity level, and other factors. 

 

To address the limitations of traditional CTG interpretation, researchers have proposed the use of machine learning techniques 

for fetal health classification based on CTG. Machine learning is a subset of artificial intelligence that involves training 

algorithms to recognize patterns in data and make predictions or decisions based on those patterns. Machine learning 

techniques have the potential to improve the accuracy and objectivity of fetal health classification, which could lead to better 

outcomes for both mother and fetus. 

 

The goal of this proposed solution is to develop and evaluate a machine learning-based classification model for fetal health 

based on CTG. We will use a dataset of CTG recordings from a cohort of pregnant women and assess the accuracy and 

performance of various machine learning algorithms in classifying fetal health. The results of this study could have important 

implications for improving fetal health monitoring and reducing adverse birth outcomes. 

 

 

 

II.LITERATURE SURVEY  

Some related works have been studied under this topic. In [1] after performing all the steps needed to get the results from 

preparation to pre-processing to feature engineering and finally performing the models( SVM, random forest, logistic 

regression and naive bayes) the authors have concluded that the model which performs the best out of all these is the logistic 

regression model with 99.5 percent accuracy. 

  

In [2] the classification model developed using XGBoost technique had the highest prediction accuracy for an adverse fetal 

outcome. Lay health care workers in low  and middle income countries can use this model to triage pregnant women in remote 

areas for early referral and further management.  

 

In [3] a comparative analysis among the built models was executed. According to the comparative analysis, the best model to 

automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an 

F1-Score of 0.963 in the pathologic class. 

 

In [4] This paper endeavour to perform under-sampling with Cluster Centroids, Condensed Nearest Neighbour, All KNN, 

Repeated ENN, Edited Nearest Neighbours, Instance Hardness Threshold and Near Miss methods.. 

 

 

III.   METHODOLOGY 

Various steps are involved in the methodology that are explained below. Figure 1 depicts flow diagram of proposed solution. 

 
Figure 1: Flow Diagram of Proposed Solution 

Data Collection: The dataset used in this study consist of CTG recordings collected from University California Irvine 

Machine Learning Repository which consist of 2126 instances. These women were in third trimester during the observations. 
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Data Pre-processing: The CTG recordings underwent pre-processing to remove any artefacts and to extract relevant features 

for classification. The pre-processing steps included detection of anomaly and rounding it off the upper limit and also check 

for the null value was carried out. The data was already thoroughly cleaned upon obtaining the dataset, there is very minimal 

cleaning tasks carried out in this particular project, some outlier detection, but chose to include any existing outliers as they 

could be important towards the analysis given the size of the dataset and the integrity of how the data was collected. 

 

Feature Selection: To reduce the dimensionality of the dataset and improve the performance of the classification model, 

feature selection techniques are applied. The feature selection process used here is PCA(Principal Component Analysis) and 

LDA(Linear Discriminant Analysis). 

 

Splitting: Dataset is being split into training set and testing set. It is in the ratio of 3:1 which means 75% testing data and 25% 

testing data. 

 

Model Building: Before building any models, including of linear discriminants from LDA application as well as clusters 

created from applying KMeans Clustering to the dataset as new features. We evaluated the performance of several machine 

learning algorithms for fetal health classification based on CTG. These algorithms include logistic regression, support vector 

machines (SVM), decision trees, random forests, and artificial neural networks (ANN).  

 

Model Evaluation: We will evaluate the performance of the machine learning algorithms based on several performance 

metrics, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). We will 

also compare the performance of the machine learning algorithms to the performance of traditional CTG interpretation. The 

random forest has the best performance with an accuracy of 95%. Figure 2 shows system architecture. 

 

Figure 2: System Architecture of proposed solution 

 

IV. RESULTS 

Table 1 shows the accuracy of each machine learning models which is evaluated using different performance metrics. 

The estimation of performance is done using below mentioned equations. 

Accuracy =       TP+TN 

                   TP+TN+FP+FN 

Precision =      TP 

                    TP+FP 

Recall =       TP 

                TP+FN 

 

F1 – score = 2*Precision*Recall 

                      Precision + Recall 

Precision measures how many of the predicted positive instances are actually positive. Recall measures how many of the 

actual positive instances are correctly predicted as positive. F1 score is the harmonic mean of precision and recall, and it 

combines both metrics into a single value. These metrics are for evaluating the performance of a classification model, as they 

provide a comprehensive assessment of the model's ability to correctly identify positive instances and avoid false positives 

and false negatives. 
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Random Forest: Here overall achieved f1 score is 94%. The individual, f1 score for normal is 97%, 79% for suspect and 
91% for pathological. Figure 3.1 displays the confusion matrix, the total number of correct predictions are 401 with 24 
incorrect. 

Logistic Regression: Here overall achieved f1 score is 92%. The individual f1 score for normal is 96%, 71% for suspect and 
83% for pathological. Figure 3.2 displays confusion matrix, the total number of correct predictions are 390 with 35 incorrect.  

SVM: Here overall achieved f1 score is 92%. The individual f1 score for normal is 95%, 70% for suspect and 89% for 
pathological. Figure 3.3 displays confusion matrix, the total number of correct predictions are 395 with 37 incorrect. 

AdaBoost: Here overall achieved f1 score is 91%. The individual f1 score for normal is 96%, 69% for suspect and 86% for 
pathological. Figure 3.4 displays confusion matrix, the total number of correct predictions are 376 with 77 incorrect.  

 

Figure 3.1: Confusion matric of Random Forest 

 

Figure 3.2: Confusion matric of Logistic Regression 

 

Table 1: Performance table of various models 
                                                                                                 Figure 3.3: Confusion matric of SVM 

Model Classes Precision Recall 
F1-

score 
Support 

SVM 

Normal 0.94 0.97 0.95 331 

Suspect 0.75 0.65 0.70 59 

Pathological 0.95 0.84 0.89 35 

                               Accuracy       0.92           425 

KNN 

Normal 0.91 0.99 0.95 331 

Suspect 0.79 0.44 0.57 59 

Pathological 0.93 0.77 0.84 35 

                               Accuracy       0.90           425 

LgR 

Normal 0.94 0.98 0.96 331 

Suspect 0.75 0.68 0.71 59 

Pathological 0.90 0.77 0.83 35 

                               Accuracy       0.92           425 

AdaB 

Normal 0.93 0.98 0.96 331 

Suspect 0.85 0.58 0.69 59 

Pathological 0.86 0.86 0.86 35 

                                 Accuracy     0.91           425 

RF 

Normal 0.95 0.99 0.97 331 

Suspect 0.95 0.68 0.79 59 

Pathological 0.91 0.91 0.91 35 

                               Accuracy       0.94           425 
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Figure 3.4: Confusion matric of AdaBoost 

KNN: Here overall achieved f1 score is 90%. The individual f1 score for normal is 95%, 57% for suspect and 84% for 
pathological. Figure 3.5 displays confusion matrix, the total number of correct predictions are 383 with 65 incorrect.  

 

Figure 3.5: Confusion matric of KNN 

Below graph in figure 4 shows variation in f1-score from all the models tested for fetal’s health. It is clear that random forest 
records the highest f1 score 

 
Figure 4: F1-score of models in proposed solution 

 

V.   CONCLUSION 

This paper is a comparative study of different algorithms that have been used by various methods for the effective prediction 

of Fetal Health. Among different algorithms used, Random Forest is proven to have highest accuracy. This indicates the 

potential of machine learning techniques in improving the clinical decision-making process and reducing the risk of adverse 

outcomes for both the mother and the fetus. 
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