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ABSTRACT 
Breast cancer remains a significant global health challenge, necessitating accurate and efficient detection methods 

to improve patient outcomes. Mammography serves as a cornerstone for early diagnosis, yet the interpretation of 

mammograms can be prone to errors, leading to both false positives and missed diagnoses. In response to this 

critical issue, this study focuses on harnessing the power of Convolutional Neural Networks (CNNs) for the 

automated detection of breast cancer in mammographic images. The research investigates a diverse range of deep 

learning techniques, including popular network architectures such as VGG19, ResNet152, InceptionV3, 

DenseNet121, MobileNetV2, and EfficientNetB0. Various factors crucial to model performance are explored, such 

as class weighting strategies, input image dimensions, preprocessing methodologies, transfer learning approaches, 

dropout rates, and the impact of different mammogram projections. Through a systematic and comprehensive 

analysis, this project aims to evaluate the effectiveness and efficiency of these deep learning methodologies in the 

context of breast cancer detection. By employing a divide-and-conquer approach, the study seeks to gain valuable 

insights into selecting the most suitable techniques for enhancing detection accuracy while minimizing the need for 

extensive trial and error experimentation. The ultimate goal of this research is to advance automated breast cancer 

screening by optimizing deep learning models for mammogram analysis. By understanding the nuances of various 

parameters and their impact on model performance, this study aims to contribute to improved diagnostic accuracy 

and ultimately enhance patient care in the realm of breast cancer detection. The proposed FusedMammoNet model 

achieved a test accuracy of 96%, recorded highest AUC-ROC ranged from 0.98-1.00 and both precision and recall 

ranging from 93% to 94%. 

 

Keywords: - Mammography, CNN, Deep Learning, EfficientNetB0, MobileNetV2, inceptionV3, Transfer 

Learning, ensemble model. 

 
1. INTRODUCTION 

 At 268,600 diagnoses and 41,760 deaths predicted for 2019, breast cancer is the second most common 

cause of cancer-related deaths among women in the US. Early detection is still essential in the fight against this 

common disease, and screening mammography, a low-dose X-ray test, is essential in detecting breast cancer in its 

early stages. However, because of the great quality of the pictures and the subtle character of asymptomatic cancer 

lesions, which are frequently small and sparsely dispersed, radiologists face a significant problem when interpreting 

screening mammograms. 

 Screening mammography has been shown to be effective in lowering the death rate from breast cancer, but 

it has several drawbacks. In a large majority of cases, false-positive recalls and later biopsies yield benign results. 

Convolutional neural networks (CNNs) have been used to help radiologists with mammography analysis in order to 

overcome these constraints. Studies now in progress frequently modify models intended for natural image analysis, 

like VGGNet and Faster R-CNN, to address detection issues with breast cancer.  

Given its high mortality rate and status as the most funded malignancy in the US, breast cancer provides 

important insights into the evolution of tumors. Early identification is still crucial, particularly in nations where 

access to health care is restricted and fatality rates are greater. Biopsies, ultrasounds, mammograms, and MRI results 

are among the diagnostic techniques. The form and features of the tumor determine its nature, whether benign or 
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malignant, underscoring the significance of precise mass segmentation in computer-aided diagnosis systems for 

reliable categorization. Breast cancer is the most prevalent cancer in women worldwide, which emphasizes the need 

for early identification, research, and efficient treatment. 

Taking into account the intrinsic distinctions between natural and mammography images, this work 

presents ensemble model. This model utilizes all the features of efficientnet b0, inceptionV3, mobilenet models. It 

helps to reduce the False Positives, False Negative and increases the accuracy. 

 

2. LITERATURE SURVEY 

 
Due to limited labeled data for mammography, transfer learning is crucial for effective model training. The 

study discusses the challenges of small public databases (e.g., DDSM mammography dataset) and the use of transfer 

learning to improve classification accuracy. In this study we have used three pre-trained model weights which is 

tested on ImageNet dataset.  Aboutalib et al[4] used an incremental approach for a 3-class classification task on 

mammograms, achieving varying performance on benign and malignant cases and achieved AUC ranged from 0.77 

to 0.96 for DDSM dataset while for the propsed model achieved AUC ranged from 0.98 to 100 on DDSM dataset 

and considered all the 5 classes. Mohiyuddin et al[3] achieved a record accuracy of 95.50% using YOLOv5, 

focusing on masses in mammograms while the propsed system achieved highest accuracy of 96% on the same 

DDSM dataset. Chun-ming et al[5] employed a Deep Cooperation Neural Network with two parallel CNNs for a 5-

class classification task. Pre-annotated ROIs were used, resulting in an accuracy of 91% for negative-class 

classification and for the same ROIs our model achieved an accuracy of 96% for the same 5 class classification.  

Levy et al[6] utilized GoogleNet with pre-annotated ROIs and achieved an accuracy of 93% which is less than our 

achieved accuracy of 96%, precision of 92% and recall of 93% while the proposed model achieved precision and 

recall ranged 93% to 94%. 

 

3. DATASET 

The dataset used in this study is a compilation of images sourced from the DDSM [1] and CBIS-DDSM [2] 

datasets. These images have undergone pre-processing, including the conversion into 299x299 dimensions by 

extracting Regions of Interest (ROIs). The dataset is stored in TensorFlow's tfrecords format. 

In terms of composition, the dataset consists of 55,890 training examples. Among these, 14% are labeled as positive, 

while the remaining 86% are categorized as negative. The data is organized into 5 tfrecords files. Here we are using 

only 3 tfrecords for training, validation and testing datasets. 

An important note regarding data division: The separation of data into training and test sets aligns with the CBIS-

DDSM dataset's categorization. However, an unintended split occurred in the test files. Specifically, the test numpy 

files exclusively contain masses, while validation files exclusively contain calcifications. A correction involves 

merging these files to establish a balanced and comprehensive test dataset. 

Moving on to pre-processing details, negative (DDSM) images underwent a two-step process involving tiling into 

598x598 tiles and subsequent resizing to 299x299. Positive (CBIS-DDSM) images followed a distinct procedure. 

Regions of Interest (ROIs) were extracted using masks, with a slight padding for contextual information. Each ROI 

underwent three random crops into 598x598 images, including random flips and rotations. Finally, these images 

were resized down to 299x299. 

In terms of labeling, the images are assigned two labels. The first, labeled as "label_normal," is set as 0 for negative 

instances and 1 for positive instances. The second, simply labeled as "label," follows a full multi-class system. Here,  

1. negative 

2. benign calcification 

3. benign mass 

4. malignant calcification 

5. malignant mass. 

 

4. PROCESSING AND AUGMENTATION 

 Since the DDSM dataset has data in the form of TFRecord files, a popular format for storing large amounts 

of data efficiently, the raw image data is decoded using TensorFlow's decode_raw function, converting it from a 

string to a NumPy array of unsigned 8-bit integers (tf.uint8). The image is resized to [224, 224] using OpenCV 

(cv2.resize). This is done because the neural network models used in the proposed model are efficientNet, 
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mobileNet which expects the input size [224,224]. For inceptionV3 model we trained the model with original size 

[299,299]. 

 The image pixel values are normalized by dividing them by 255. This is a standard practice to scale pixel 

values to the range [0, 1] before feeding them into a neural network. The image is stacked along the first axis to 

create a 3-channel image. This is done using np.stack([image, image, image], axis=0). This step is necessary because 

neural networks commonly expect input images with three channels (e.g., RGB), and the original images are 

assumed to be single-channel. The resulting image is converted to a PyTorch tensor using 

torch.from_numpy(image).float() to ensure it has the correct data type for PyTorch. The label is also converted to a 

PyTorch tensor using torch.tensor(label, dtype=torch.long). 

 

5. PROPOSED WORK  

 We have experimented this dataset on different models like efficientnet b0, Vision Transformer, 

InceptionV3, DenseNet, MobileNetV2, ResNet152, VGG19, GoogleNet models. Based on our needs the top 3 

models, which performed better based on selecting suitable useful features, are EfficentNet, InceptionV3, 

MobileNet. Based on this we performed stacking ensemble on the three selected models. 

MobileNetV2: A thin neural network architecture called MobileNetV2 is intended for mobile and edge devices. To 

keep performance high while lowering computational complexity, depthwise separable convolutions are used. 

Effective in real-time picture classification problems where computing resources are limited. 

InceptionV3: InceptionV3, developed by Google, is part of the Inception family[8] of neural network architectures. 

Known for its deep architecture with inception modules that incorporate multiple filter sizes. Effective in capturing 

both local and global features, making it suitable for various computer vision tasks. 

EfficientNetB0: EfficientNetB0 is part of the EfficientNet[7] family, known for achieving state-of-the-art 

performance with efficient model scaling. These models balance depth, width, and resolution to optimize model size 

and computational efficiency. Provides competitive accuracy with lower computational requirements compared to 

larger models. 

  

 
Fig-1 : Block diagram of FusedMammoNet model 

 Three pre-trained models (EfficientNetB0, InceptionV3, and MobileNetV2) are used as input to the 

ensemble model along with the output classes. Forward passes through each individual model (modelA, modelB, 

modelC). Concatenate the model outputs along the feature dimension. Two fully connected layers are used in this 

enseble model. First fully connected layer with input size 3 * input (concatenated feature dimension) and output size 

10. Second fully connected layer with input size 10 and output size ‘number of classes’. Softmax activation is 

applied to the output. 

 

6. EXPERIMENT AND RESULT 

6.1 Accuracy and Loss: Accuracy measures the proportion of correctly classified cases from the total number of 

objects in the dataset. To compute the metric, divide the number of correct predictions by the total number of 

predictions made by the model. 
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Accuracy=(TP+TN)/(TP+FP+FN+TN) 

 

Fig-2 : Accuracy and loss curves 

Values Training Validation 

Accuracy 95.88 96.10 

Loss 0.9458 0.9433 

Table-1: Accuracy and loss values 

Precision: In multiclass classification, precision is calculated for each class individually. Precision for a given class 

is defined as the fraction of instances correctly classified as belonging to that specific class out of all instances the 

model predicted to belong to that class. The formula for precision (P) for a class "C" can be expressed as: 

Precision for class C = (True Positive for Class C)/(True Positive for Class C+False Positive for Class C) 

Recall : Recall for a given class is defined as the fraction of instances in that class that the model correctly classified 

out of all instances belonging to that class. The formula for recall (R) for a class "C" can be expressed as: 

Recall for class C = (True Positive for Class C)/(True Positive for Class C+False Negative for Class C) 

F1-score: This is a harmonic mean between Precision and Recall, combining their importance into a single metric. It 

considers both false positives and false negatives, aiming for a balance between them. 

Support: Number of actual occurrences of a particular class in the dataset. 

 Precision Recall F1-score Support 

Class 0 0.938 0.943 0.940 5830 

Class 1 0.942 0.941 0.941 265 

Class 2 0.933 0.936 0.934 231 

Class 3 0.944 0.945 0.944 174 

Class 4 0.939 0.937 0.938 207 

 

Accuracy   0.961 6707 

Macro avg 0.939 0.940 0.939 6707 

Weighted avg 0.962 0.962 0.962 6707 

Table-2: Evaluation metrics for each class 
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Specificity: Specificity in multiclass classification is the ability of a model to correctly identify instances that do not 

belong to a particular class, out of all instances that do not belong to that class. Specificity gives information about a 

model's capacity to avoid misclassifying instances as belonging to a particular class when they do not. The formula 

for specificity for a class "C" is given by: 

Specificity for class C= (True Negative for Class C)/(True Negative for Class C+False Positive for Class C) 

Sensitivity: Sensitivity in multiclass classification is the ability of a model to correctly identify instances of a 

specific class out of all instances belonging to that class. Sensitivity provides insights into how well a model is 

capturing instances of a particular class among all the instances that actually belong to that class. The formula for 

sensitivity for a particular class "C" is given by: 

Sensitivity for class C= (True Positive for Class C)/(True Positive for Class C+False Negative for Class C) 

Class Specificity Sensitivity 

0 0.941847 0.995540 

1 0.992859 0.664151 

2 0.993669 0.809524 

3 0.987601 0.643678 

4 0.990154 0.700483 

Table- 3: Specificity and Sensitivity for each class 

Confusion Matrix: The confusion Matrix gives a comparison between actual and predicted values. It is used for the 

optimization of machine learning models. The confusion matrix is a N x N matrix, where N is the number of classes 

or outputs. 

 

Fig-3: Confusion Matrix 

AUC-ROC curve: AUC-ROC ranges from 0 to 1, where 0.5 indicates random classification, and 1.0 indicates 

perfect classification. A higher AUC-ROC score suggests better discrimination and ordering of classes based on 

their predicted probabilities. AUC-ROC can be useful for assessing the model's ability to distinguish between 

different classes, even in a multiclass setting. 
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Fig-4 : AUC-ROC plot 
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