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ABSTRACT 
We address the problem of thermal stresses and temperature distribution in a semi-infinite cylinder with traction-

free boundaries on both ends, exposed to a specified axisymmetric temperature distribution. The study applies the 

Lord-Shulman and classical coupled thermoelasticity theories, utilizing integral transforms for solving the problem. 

First, an exact solution is obtained in the transform domain, followed by analytical inversion of Hankel transforms 

and numerical inversion of Laplace transforms. The resulting thermal stresses are evaluated for copper material, 

and a comparison of results is made between the two theories. 

Keyword: - Lord-Shulman theory, Classical coupled theory, Axisymmetric Temperature Distribution,  
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1. INTRODUCTION 

The study of thermoelasticity, which couples thermal and elastic fields, has significantly evolved since its inception. 

Biot [1] pioneered the theoretical framework by integrating thermodynamics with irreversible processes, laying the 

foundation for later developments. Lord and Shulman [2] further generalized the theory, introducing a dynamical 

perspective to capture non-classical behavior in thermoelastic systems. Over the years, advancements have led to the 

study of anisotropic media in thermoelasticity, as discussed by Dhaliwal and Sherief [3], and the formulation of 

theories for different material behaviors by Green and Lindsay [4]. 

Incorporating the concept of second sound, which describes the finite speed of heat propagation, Chandrasekariah 

[5] reviewed this phenomenon in detail, making it a vital aspect of contemporary thermoelasticity. The 

generalization of thermoelastic theories to account for various geometries and boundary conditions has been a 

significant focus in recent works. Youssef [6, 7, 8] extensively studied thermoelastic problems involving cylindrical 

and spherical cavities subjected to moving heat sources, providing analytical solutions for these cases. 

Chen and Gurtin [30] developed a theory of heat conduction that incorporates two distinct temperature fields, 

addressing non-equilibrium thermodynamic processes in materials. Mallik and Kanoria [10] and El-Maghraby [11, 

12] analyzed two-dimensional thermoelastic problems with heat sources in thick plates. These studies have 

contributed to a more comprehensive understanding of how heat fluxes influence stress fields within various 

materials. Furthermore, McDonald [13] explored the effects of laser-generated ultrasound waveforms on metals, 

offering insights into how thermal and elastic waves interact in these contexts. 

Recent efforts have focused on the generalization of thermoelastic solutions for different geometries. For example, 

Baghri and Eslami [14, 24] provided unified solutions for cylinders and spheres, while Aquadi [15] and Sherief and 

El-Maghraby [16] dealt with axisymmetric and crack-related problems in thermoelastic solids. In numerical 

methods, the Gaver-Stehfast algorithm [17, 18, 19], as reviewed by Knight and Raiche [20], has emerged as a 

powerful tool for inverting Laplace transforms in thermoelastic problems, especially in stochastic processes and 

transient calculations. 
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The inversion of Laplace integrals remains a critical mathematical technique in solving complex thermoelastic 

problems, as demonstrated by Widder [21]. Numerical approaches, such as those outlined in Numerical Recipes by 

Press et al. [22], continue to play a significant role in developing solutions for practical applications. 

Several studies have explored the effects of boundary conditions and heat supply mechanisms on thermoelastic 

materials. For example, Awad [23] examined spatial decay estimates in bounded domains, while Furukawa et al. 

[26] and Das and Lahiri [25] studied interactions in cylindrical and spherical geometries. Ghosh and Kanoria [27] 

applied the Green-Lindsay theory to functionally graded materials, further enriching the thermoelastic theory's 

applicability to advanced materials. 

This body of work demonstrates the growing importance of advanced thermoelastic theories and their applications in 

modern engineering problems involving thermal stresses and heat transfer in complex materials and geometries. In 

the present problem, the effects of the induced temperature and heat source on the temperature distribution and 

stress fields in a homogeneous isotropic thermoelastic thick cylinder of height 2h and infinite extent have been 

studied. The analytic solutions are found in Laplace transform domain. Then numerical methods are used to invert 

the Laplace transforms and to evaluate the integrals involved, so as to obtain the solution in the physical domain. 

The derived expressions are computed numerically for copper material and the results are presented graphically. 

 

2. FORMULATION OF THE PROBLEM 

Consider an axisymmetric homogeneous isotropic thick plate of height 2h  defined as 0 r  , h z h−   .We take 

the axis of symmetry as the z  axis and the origin of the system of co-ordinates at the middle plane between the 

upper and lower faces of the plate. The problem is studied using the cylindrical polar co-ordinates ( , , )r z . Due to the 

rotational symmetry about the z axis of the problem all quantities are independent of the co-ordinate . 

The displacement vector, thus, has the form 

( ,0, )u u w=
 

The equations of motion can be written as [15] 

2
2

2 2
( )

e T u
u u

r rr t


    

  
 − + + − =

                                                                                                                           (1) 

2
2

2
( )

e T u
w

z z t
    

  
 + + − =

                                                                                      (2) 

The generalized equation of heat conduction has the form [15] 

2
2

0 0 02
( ) 1Ek T c T T e Q

t tt
    

    
 = + + − +        

                                                                 (3) 

where T  is the absolute temperature and e  is the cubical dilatation given by the relation 

( )
1u u w w

e ru
r r z r r z

   
= + + = +

   
                                                                                                    

(4) 

2 2
2

2 2

1

r rr z

  
 = + +

                                                                                                                        
(5) 

The following constitutive relations supplement the above equations 

02 ( )rr

u
e T T
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   


= + − −


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02 ( )zz
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
                                                                                           

(7) 
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u w

z r
 

  
= + 

                                                                                                                               
(8) 
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We shall use the following non-dimensional variables 

1r c ηr = , 1z c ηz = , 1u c ηu = , 1w c ηw = , 2
1t c ηt =  

2
0 1 0c η  = , 

ij
ij





 = , 0( )

( 2 )

T T


 

−
=

+
, 

2 2
1 ( 2 )

Q
Q

k c



  
 =

+
 

where Ec
η

k


= , 1

2
c

 



+
= , 1c is the speed of propagation of isothermal elastic waves. 

Using the above non-dimensional variables, the governing equations take the form (dropping the primes for 

convenience) 

( )
2

2 2 2 2

2 2
1

u u
u e

rr t


  

 
 − + − − =

                                                                                                       

(9)
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2

2 2 2 2

2
1

e w
w

z z t


  

  
 + − − =

  
 

                                                                                            

(10)

                                                                                              

2
2 2

0 02
( ) 1e Q

t tt
     

    
 = + + − +                                                                                        

(11)

                                                       

while the constitutive relations (6)-(8), becomes 

( )2 22 2rr

u
e

r
   


= + − −


     

                                                                                                         

(12)

 
 

( )2 22 2zz

w
e

z
   


= + − −


                                                                                                                             

(13)

                              
 

rz

u w

z r


  
= + 
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(14)

          

                                                                                        

                                                                                     
 

We note that the equation (4) retains the form 

Also 
( )2 2 




+
=                                                            

Combining equations (9) and (11), we obtain upon using equation (5), 

2
2 2

2

e
e

t



 − =


  

                                                                                                                                     

(15)           

We assume that the initial state is quiescent, that is, all the initial conditions of the problem are homogeneous. 

The boundary conditions are taken as  

( , )f r t =

         

,       z h= 

                                                                                                           

(16)       

              

                                

0zz rz = =

        

,       

 

z h= 

                                                                                     

 

Where ( , )f r t , is a known function of r and t . 
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2.1 Solution in the transformed Domain: 

Applying the Laplace transform defined by the relation, 

0

( , , ) ( , , ) ( , , )stf r z s L f r z t e f r z t dt



−= =                                                                                                       
(17) 

to all the equations (9)-(15), we obtain, 

( )2 2 2 2 2

2
1

u
u e s u
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
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
          

              

                                                                         (18)               
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(24)    

The boundary conditions (17), in the transformed domain, take the form 

( , )f r s =

         

,       z h=                                                                                                                     (25)    

0zz rz = =

     

,   

    

z h= 

      

 

  Eliminating e  between the equations (20) and (21), we get, 

( )  ( )4 2 2 3 2 2
0 0 0(1 )(1 ) (1 ) 1 ( )s s s s s s s Q     − + + +  + + = − +  −

                                      
(26)    

After factorization the above equation becomes, 

( )( ) ( )2 2 2 2 2 2
1 2 01 ( )k k s s Q  −  − = − +  −    

                                                                               
(27)   

where  2
1k and 2

2k are the roots with positive real parts of the characteristic equation 

( )4 2 2 3
0 0(1 )(1 ) (1 ) 0k s s s k s s  − + + + + + =

                                                                                    
(28) 

The solution of Eq. (27) can be written in the form,   
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1 2 p   = + +
                                                                                                                                        

(29) 

where . i  is a solution of the homogenous equation, 

( )2 2
1 0 , 1,2.ik i − = =                                                                                                                                              (30) 

and p is a particular solution of equation (28) 

In order to solve the problem, we shall use the Hankel transform of order zero with respect to r . This transform of a 

function 
( , , )

0
T r z t

r


=


 is defined by the relation, 

*
0

0

( , , ) ( , , ) ( , , ) ( )f z s H f r z s f r z s r J r dr 



 = =
                                                                                                            (31) 

where 0J is the Bessel function of the first kind of order zero. 

The inverse Hankel transform is given by the relation 

 

1 * *
0

0

( , , ) ( , , ) ( , , ) ( )f r z s H f z s f z s J r d    



−  = =
                                                                                                    (32) 

Applying the Hankel transform to equation (30), we get 

( ) 2 2 2 *
1 0 , 1,2.iD k i − + = =

 
  , where /D z=  

 

The solution of the above equation can be written in the form 

( )* 2 2( , ) cosh( )i i i iA s k s q z = −           
                                                                                                            

(33) 

where 2 2
i iq k= +  

Applying the Hankel transform to both sides of equation (27) ,we get 

( )( ) ( )2 2 2 2 * 2 2 *
1 2 0(1 )pD q D q s D q Q − − = − + −

                                                                                   
(34) 

where 2 2q s= +  

We take the heat source ( , , )Q r z t in the following form 

( ) ( )cosh
( , , )

2

t r z
Q r z t

r

 


=                                                                                                                              (35) 

This is a cylindrical shell heat source releasing heat instantaneously at 0t =  and situated at the centre r a=  varying 

in the axial direction. 

On taking Laplace transform and Hankel transform, we get, 
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* coshQ z=                                                                                                                                                            (36) 

The solution of the equation (35) has the form, 

( )( )
( )( )

2
0*

2 2
1 2

1 1
cosh

1 1
p

s q
z

q q




− −
=

− −
                                                                                                                             (37) 

Then the complete solution in the transformed domain can be written as  

( )
( )( )22

0* 2 2

2 2
1 21

1 1
( , , ) ( , ) cosh cosh

(1 )(1 )
i i i

i

s q
z s A s k s q z z

q q


  

=

+ −
= − −

− −
                                                       (38) 

On taking the inverse Hankel transform of both sides, we get, 

( )
( )( )22

02 2
02 2

1 210

1 1
( , , ) ( , ) cosh cosh ( )

(1 )(1 )
i i i

i

s q
r z s A s k s q z z J r d

q q


    



=

 + − 
= − − 

− − 
 

                           (39) 

Similarly eliminating   between equations (20) and (21), we get,  

( )( ) ( )2 2 2 2 2
1 2 01k k e s Q −  − = − + 

                                                                                                 
(40) 

On taking Hankel transform of equation (40), we get, 

( )( ) ( )2 2 2 2 * 2 2 *
1 2 0(1 )D q D q e s D Q − − = − + −

                                                                                  
(41) 

Complete solution of equation (41) is of the form, 

( )( )22
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1 21
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i

s
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(42) 

Taking the inverse Hankel Transform, we get, 

( )( )22
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1 1
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i

s
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

=
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(43) 

Taking Hankel transform of equation (19) and using equations (39) and (43), the complete solution can be written 

as, 

( )2
0*

3 2 2
1 21

1
( , , ) ( , ) sinh ( , ) sinh sinh

(1 )(1 )
i i i

i

s
w z s B s q z A s q q z z

q q


  

=

+
= + −

− −
            

               

(44) 

where 2 2 2
3q s = +  

On inverting the Hankel transform, we get, 
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( )2
0

3 02 2
1 210

1
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(1 )(1 )
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i

s
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

=

 + 
= + − 
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(45) 

Taking the Hankel and Laplace transform of both sides of equation (4) and using equations (43) and (45), we get, 

( )2
02

3 3 2 2
1 21

11
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i
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r r q q
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(46) 

On applying inverse Hankel Transform on both sides of equation (46), we get, 

( )
( )

2
02

3 3 12 2
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1
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(1 )(1 )
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i

s
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
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

              

(47) 

The stress tensor components are in the form 

( ) ( )2
02 2
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1
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i
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
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(48) 
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i

s
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
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After applying the Hankel transform, the boundary become, 

* *( , , ) ( , )z s f s  =
   

,
         

z h=                                                                                                      (50) 

* * 0zz rz = =

     

,   
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(51) 

On applying the boundary conditions (50) and (51) to determine the unknown parameters, we get, 
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=

+
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(54) 

On solving equations (52)-(54) numerically, we get the complete solution of the problem in the transformed domain. 

3. INVERSION OF DOUBLE TRANSFORMS: 

Due to the complexity of the solution in the laplace transform domain, the inverse of the Laplace transform is 

obtained using the Gaver-Stehfast algorithm [17],[18],[19]. A detailed explanation can be found in Knight and 
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Raiche (1982) [19].The final formula based on the work done by Widder[21] (1934) who developed an inversion 

operator for the Laplace transform is given here. Gaver [17] and Stehfast [18, 19] modified this operator and derived 

the formula 

1

ln 2 ln 2
( ) ( , )

K

j

f t D j K F j
t t

=

 
=  

 


                                                                                                                 

(55)

 

With 

min( , )
(2 )!

( , ) ( 1)
( )! !( 1)!( )!(2 )!

j M M
j M

n m

n n
D j K

M n n n j n n j

+

=

= −
− − − −

                                                                     

(56)

 

where K is an even integer, whose value depends on the word length of the computer used. / 2M K= and m is the 

integer part of the ( 1) / 2j + . The optimal value of K was chosen as described in Stehfast algorithm, for the fast 

convergence of results with the desired accuracy. The Romberg numerical integration technique [22] with variable 

step size was used to evaluate the integrals involved. All the programs were made in mathematical software 

MATLAB. 

4. NUMERICAL RESULTS AND DISCUSSION: 

For numerical calculations we take  

0( , ) ( ) ( )f r t H a r H t= −

 
where 0 is a constant. 

On taking Hankel and Laplace transform of the above function, we get, 

* 0 1( )
( , )

a J a
f s

s

 



=

                                                                                                                                            

(57)

 

Copper material was chosen for purposes of numerical evaluations. The constants of the problem are shown below 

1 1 1386 . . .k J K m s− − −=        5 11.78 10t K − −=          1 1383.1 . .Ec J Kg K− −=      28886.73 .s m −= 10 23.86 10 .N m −=        

10 27.76 10 .N m −=        38954 .kg m −=               3 1
1 4.158 10 .c m s−=   0 0.02s =                           0 293T K=                      

10.0168 . .N m J −=            2 4 =        

 1a =                                     0 1 =                                1h =                                         
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Fig.1. Temperature distribution in the middle plane. 

 
             Fig.2. Radial displacement u distribution in the middle plane 

 
Fig, 3. Axial stress component zz

 
along the radial direction  in the middle plane. 
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Fig. 4. Shear Stress Component  rz
 
along the radial direction in the middle plane. 

 

Fig.5. Temperature distribution   along z  axis at 1r m= . 

 

Fig, 6. Axial stress component zz
 
along z  axis at 1r m= . 



Vol-10 Issue-1 2024  IJARIIE-ISSN(O)-2395-4396 
 

25151 www.ijariie.com 1977 

 

Fig. 7. Shear Stress Component  rz
 
along z  axis at 1r m= . 

The numerical values for temperature  , the radial displacement component u , the axial stress component zz and 

the shear stress component rz  have been calculated at the middle of the plane ( 0z = ) for different time instants 

0.1 ,0.25 ,1.1t =
 
along the radial direction and are displayed graphically for Lord-Shulman theory (L-S theory) and 

Classical Coupled Thermoelasticity (CT theory)  as shown in fig 1,2,3 and 4 respectively . Since the displacement 

function w is an odd function of z , its value on the middle plane is always zero and it is not represented graphically 

here. 

Fig. 1 , shows the nondimensional temperature distribution along the radial direction at the middle plane ( 0z = ) at 

different time instants 0.1 ,0.25 ,1.1t = . Classical Coupled Theory of thermoelasticity (CT) predicts an infinite speed 

of wave propagation, whereas the Lord-Shulman (LS) model of generalized thermoelasticity involves the 

introduction of one relaxation time 0  , due to which the waves assume finite propagation speeds. Hence the 

variation in values is clearly seen for the two theories in the plots. But the nature of the curve seems to be the same 

in both the theories. It is also observed that the nondimensional temperature   drops gradually along the radial 

direction. 

Fig 2 . shows the plot of radial displacement u  along the radial direction at the middle of the plane       ( 0z = ) at 

different time instants. It is observed that the radial displacement increases from zero and becomes maximum near 

4r m=  , then it decreases as r  increases and becomes again zero near 9r =  . 

Fig. 3. shows the variation of axial stress zz  along the radial direction in the middle plane ( 0z = ). A difference in 

profiles of axial stress is seen at small times ( i.e. at 0.1 ,0.25t = ) and large times            ( i.e. at 1.1t = )  . The 

difference in results for L S and C T can also be seen in the plot. 

Fig. 4. shows the shear stress  rz  distribution along the radial direction of the cylinder in the middle plane ( 0z = ) 

at different time instants. Shear stress shows sinusoidal nature in the plots with high peaks in the middle of the plane 

and gradually reducing as the radius increases.   

Fig.5.,fig.6. and fig.7 shows the plots of non-dimensional temperature distribution , axial stress zz  and the shear 

stress  rz distribution respectively, along z  axis at different time instants 0.1 ,0.25 ,1.1t =
 
. It is observed from the 

plots of axial stress and Shear stress that the mechanical boundary conditions are satisfied at z h=   . 
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Clearly the difference between the L S and CT theory of thermoelasticity is observed in the plots. 

5. CONCLUSIONS: 

In this problem we have used the generalized theory of thermoelasticity (L-S model) to solve the problem for semi-

infinite cylinder with heat source and compared the model with Classical coupled theory (C T). We have directly 

found the solution for the field equations without using the potential functions .This helps in eliminating the well 

known problems associated with the solutions using potential functions. The numerical inversion methods are very 

fast and accurate as compared to any other methods. Due to the presence of one relaxation time in the field equations 

the heat wave assumes finite speed of propagation. From the graphs we can clearly observe that the results obtained 

using the generalized theory of thermoelasticity (L S model) with one relaxation time are different from the results 

obtained by using the Classical coupled theory (C T model) of thermoelasticity. We may conclude that the system of 

equations in this paper may prove to be useful in studying the thermal characteristics of various bodies in important 

engineering problems using the more realistic Lord-Shulman model of thermoelasticity predicting finite speeds of 

wave propagation. 
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