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ABSTRACT 
 

Low-precision arithmetic operations to accelerate deep-learning applications on field- programmable gate 

arrays (FPGAs) have been studied extensively, because they offer the potential to save silicon area. However, 

these benefits come at the cost of a decrease in accuracy. Neural network -based methods for image 

processing are becoming widely used in practical applications. Modern neural networks are computationally 

expensive and require specialized hardware, such as graphics processing units. Since such hardware is not 

always available in real life applications, there is a compelling need for the design of neural networks for 

mobile devices. Mobile neural networks typically have reduced number of parameters and require a 

relatively small number of arithmetic operations. However, they usually still are executed at the software 

level and use floating-point calculations. The use of mobile networks without further optimization may not 

provide sufficient performance when high processing speed is required, for example, in real -time video 

processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order 

to efficiently use already trained neural networks on a mobile device. 

Keyword : -  Field programmable gate arrays, Neural network hardware, Fixed -point arithmetic, 2D 

convolution, Digital arithmetic. 

 
1.  INTRODUCTION 

 

Convolutional neural networks (CNNs) have been widely adopted in recent computer vision applications due 

to their superior prediction capabilities, with researchers gravitating toward larger networks with higher 

computational complexity and memory requirements. Field-programmable gate array (FPGA) 

implementations have demonstrated improved latency and power efficiency compared with central 

processing unit (CPU) and graphics processing unit(GPU) technologies. 

  

In contrast to CPU/GPU technologies, they allow customized data paths, enabling improved parallelism and 

less data movement. This design flexibility poses an opportunity to optimize system performance through 

custom hardware tailored to the application. Optimizations via compression, quantization, and neural network 

layer explorations have been utilized to reduce complexity and boost performance. In particular, quantizing 

inference networks to very low precision, such as constraining weight representations to binary or ternary 

values, both reduces memory requirements and enables multiplications to be replaced with the exclusive 

NOR operation. However, the disadvantage of extreme quantization is that the networks typically incur 

significant accuracy degradation for very low precisions , especially for complex problems. 

One limitation with traditional fixed-point quantization is that it has a uniform distribution. However, it has 

been demonstrated that a non-uniform distribution with the same number of potential weights can result in 
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better accuracy, provided the distribution appropriately matches the desired full-precision neural network 

weight distribution. It follows that reducing precision may not be the best method to save silicon area. 

Reconfigurable constant coefficient multipliers  (RCCMs) are an alternative method to reduce FPGA 

resources through time multiplexing and resource sharing. They are usually realized using additions; 

subtractions, bit shifts, and multiplexers, meaning that multiplies are implemented without requiring dig ital 

signal processing (DSP) blocks on an FPGA. However, RCCMs are restricted to a given number of target 

coefficients; this has restricted their use to DSP application domains including digital filtering and linear 

transformations. 

Following properties of many modern high-performing CNN architectures make their hardware 

implementation feasible: 

• High regularity: all commonly used layers have similar structure (Conv3x3, Conv1x1, Max-Pooling); 

• Typically small size of convolutional filters: 3 × 3; 

• ReLU activation function (comparison of the value with zero): easier to compute compared to previously 

used Sigmoid and Tanh functions. 

Due to high regularity, size of the network can be easily varied, for example, by changing the number of 

convolutional blocks. In the case of field programmable gate arrays (FPGAs),thisallows to program the 

network on different types of FPGAs, providing different processing speed. 

  

For example, implementation of higher number of convolutional blocks on an FPGA can directly lead t o a 

speed-up in processing. Related direction in neural network research considers adapting them for the use on 

mobile devices. However, they are still executed at the software level and use floating -point calculations. For 

some tasks such as real-time video analysis that requires processing of 30 frames per second mobile networks 

still can be not fast enough without further optimization 

In order to use an already trained neural network in a mobile device, a set of optimizations can be used to 

speed up computation. There exist a number of approaches to do so, including weight compression or 

computation using low-bit data representations. Since hardware requirements for neural networks keep 

increasing, there is a need for design and development of specialized hardware block for the use in ASIC and 

FPGA. The speed up can be achieved by following: 

• Hardware implementation of the convolution operation, which is faster than software convolution;  

• using fixed-point arithmetic instead of floating-point calculations; 

• reducing the network size while preserving the performance; 

• Modifying the structure of network architecture while preserving the same level of performance and 

decreasing the footprint of the hardware implementation and saved weights. 

 

 

 

Figure 1. DE0-Nano development board and external devices  
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2.  BACKGROUND 

2.1  Convolutional Neural Networks 

 
CNNs are biologically inspired networks that process input tensors (multidimensional arrays) of (w, h, d) 

dimensions in a transnationally invariant manner [1]. Typically, w and h are spatial dimensions and d is 

the number of channels. Processing operations, such as convolution, pooling, and activation functions, 

are applied in a series of layers, each of which transforms the input tensors from dimensions (w, h, d) → 

(w, h, d). 

Pooling layers are downsamplers of 2-D images. Max pooling layers provide a spatial maximum 

function, which divides an input image into small sub tiles of a given window size and then replaces these 

with the maximum value in the subtile. An average pooling layer is similar; however, it finds the average 

in the subtile rather than the maximum. 

 

2.2 Implementation requirements 

 
To demonstrate our approach, we implement a solution for the problem of recognizing handwritten digits 

received from a camera in real time. The results are displayed on an electronic LED screen. The minimal 

speed of digit recognition should exceed 30 FPS, that is, a neural network should be able to process a 

single image in 33ms. The resulting hardware implementation should be ready for transfer to separate 

custom VLSI device for mass production. 

3.  PROPOSED DESIGN 

 

3.1  CNN architecture design 

 
We searched for building blocks that efficiently map to the logic fabric of an FPGA. Our designs  are 

optimized for the latest Xilinx FPGAs. For these devices, a slice provides either six-input LUTs with a 

single output (used in Topology A) or two five-input LUTs with shared inputs (used in Topology B). As 

such, we designed our base topologies to ensure the MUX’es fit into the same LUTs that are required for 

the adders. Fig. 2 shows the two base topologies used to build the RCCM units in this article. Each of 

these consists of an adder with at least one input being the output of a MUX. However, to ensure the 

topology fits into a single LUT, this comes at a cost of less select inputs. Through our experimentation, 

we found that the chosen topologies were sufficient for creating RCCMs with a desired coefficient set to 

simplify the training process. 

All contemporary FPGA devices are similar in that their logic blocks consist of LUTs followed by a fast 

carry chain. Hence, a simple adder can be extended by MUXes with no additional cost for certain MUX 

sizes when carefully selected for the target device. The detailed slice mappings of our base topologies are 

shown in Fig. 3, highlighting how our design consumes exactly the same silicon area as a traditional 

ripplecarry adder with the same word size on that FPGA (which would only implement the XOR gate to 

complete the carry logic to a full adder). 
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Figure 2. Base topologies used to build reconfigurable multipliers. 

 

a) Topology A. 

b) Topology B. 

 

 

 
Figure 3. Bit-level FPGA slice mapping of base topologies 

 

(a)  Topology A. 

(b)  Topology B. 
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3.2 FPGA-based hardware implementation 

 
In FPGA-based realization, SDRAM is used to store a video frame from camera. In SDRAM memory on 

De0-Nano card used in this study, two equal areas for two frames are allocated - current frame is 

recorded in the first area, and previous frame is read from the other memory area. And after the output is 

finished, these areas change their roles. When using SDRAM memory in this study, we consider two 

important issues. First, memory operates at high frequency of 143MHz, thus, we face one more problem 

of transferring of data from the clock domain of camera to the clock domain of SDRAM. Second, in order 

to achieve maximum speed, writing to SDRAM should be performed by whole transactions, or in “burst”. 

FIFO directly built in FPGA memory is the best way to solve both of these problems. Basic idea is that 

camera fills FIFO at low frequency, then SDRAM controller reads data at high frequency, and 

immediately writes them to memory in one transaction. Data output to TFT screen is organized in the 

same way. Data from SDRAM are written to screen FIFO, and then are read at the frequency of10MHz. 

After FIFO has been cleared, the operation is repeated. Process of frame data transfer through different 

memory locations is shown in Fig.4A, and the functional design of the project using Verilog modules is 

shown in Fig.4B. 

 

 

 Figure 4. Data flow in FPGA implementation: 

A. Frame data transfer; B.  Functional design of the project using Verilog modules. 
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Figure 5. Schematic representation of the hardware implementation 

 

A picture from the camera, after passing through SDRAM, is displayed on the screen as 

is, and also is fed to neural network for its recognition through block that converts image to 

grayscale and decreases resolution. When neural network operation is finished, the result is 

also output directly to the screen. Since the camera has a large number of operation 

parameters, they are incorporated in a separate module that uploads them to the camera 

before the operation starts. Hardware implementation of the neural network is presented 

schematically in Fig.5. 

After conversion, an input image is stored in the database, which also stores weight coefficients 

for each layer that were calculated and wired-in beforehand. As necessary, data from there is 

downloaded through the controller to the small memory unit for the further use. Everything in neural 

network is controlled by the main module that keeps the sequence and parameters of network layers. 

In the hardware realization, not all layers of neural network under test are used; some of them are 

replaced by other functions. For example, there is no ZeroPadding layer, instead of it module of 

intermediate image edge detection is applied, which allows to reduce chip memory usage. 

GlobalMaxPooling layer is replaced by the function from the Convolution layer that immediately 

gets GlobalMaxPooling layer result by finding the largest value in the intermediate image. The rest 

of the layers are implemented as separate modules. Since Convolution and Dense layers can use 

convolutional blocks for calculations, both of them have access to these blocks. Modules contain 

ReLU activation function, which is used as needed. This modified activation is realized as a separate 

module, from which results of the neural network operation are received. To implement the neural 

network, the specialized Convolution block is used, which performs convolution of 3 × 3 in one 

clock cycle (we can make such block for other dimensions 4×4, 5×5, etc., if we have those in the 

network). This block is a scalar product of vectors and contains 9 multiplications  and 8 additions. 

The same block is used for calculations in the fully connected. 
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4.  PERFORMANCE RESULTS 

 

 

Number of 

LUT’s  

Utilized 

Number of 

DSP slices 

utilized 

Delay 

Static power 

dissipation 

Dynamic 

power 

dissipation 

Total power 

dissipation 

CNN 112 22 18.936 ns 0.791 W 27.181 W 27.972 W 

DCNN 56 26 16.779ns 0.791 W 25.952 W 26.743 W 

Modified 

DCNN 
8 28 14.156 ns 0.791 W 23.780 W 24.571 W 

 

Table -I  Comparison of different CNN architectures  

 

Figure 6. Simulation result of the proposed design 



Vol-8 Issue-5 2022               IJARIIE-ISSN(O)-2395-4396 
    

18163 ijariie.com 339 

 

 

 

Figure 7. Summary report of the proposed design 

 
 

Figure 8. Power report of the proposed design 

5.  CONCLUSION 
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There are many possible ways to improve performance of hardware implementations of neural networks. 

While we explored and implemented some of them in this work, only relatively shallo w deep neural 

networks were considered, without additional architectural features, such as skip connections. 

Implementing even deeper networks with multiple dozens of layers is problematic, since all layer weights 

would not fit into the FPGA memory and will require the use of the external RAM, which can lead to the 

decrease in performance. Moreover, due to the large number of layers, error accumulation will increase 

and will require wider bit range to store fixed- point weight values. In the future, we plan to consider 

implementing on FPGA’s  specialized lightweight neural network architectures that are currently 

successfully used on mobile devices. This will allow using the same hardware implementation for 

different tasks by fine-tuning the architecture using pre-trained weights. 
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