
Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 332

IMPLEMENTATION of DEEP NEURAL

NETWORK ACCELERATOR USING

FPGA

S. Pradeep1, P. Sridevi2, N. Seshu Kumar3, P. Jyostna4

1
 P. G Scholar , Electronics and Communication Engineering ,Miracle Educational Society Group

of Institutions ,Andhra Pradesh ,India
2
 Assistant Professor, Electronics and Communication Engineering ,Miracle Educational Society

Group of Institutions ,Andhra Pradesh ,India

3
 Associate Professor, Electronics and Communication Engineering ,Miracle Educational Society

Group of Institutions ,Andhra Pradesh ,India

4
 Assistant Professor, Electronics and Communication Engineering ,Miracle Educational Society

Group of Institutions ,Andhra Pradesh ,India

ABSTRACT

Low-precision arithmetic operations to accelerate deep-learning applications on field- programmable gate

arrays (FPGAs) have been studied extensively, because they offer the potential to save silicon area. However,

these benefits come at the cost of a decrease in accuracy. Neural network -based methods for image

processing are becoming widely used in practical applications. Modern neural networks are computationally

expensive and require specialized hardware, such as graphics processing units. Since such hardware is not

always available in real life applications, there is a compelling need for the design of neural networks for

mobile devices. Mobile neural networks typically have reduced number of parameters and require a

relatively small number of arithmetic operations. However, they usually still are executed at the software

level and use floating-point calculations. The use of mobile networks without further optimization may not

provide sufficient performance when high processing speed is required, for example, in real -time video

processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order

to efficiently use already trained neural networks on a mobile device.

Keyword : - Field programmable gate arrays, Neural network hardware, Fixed -point arithmetic, 2D

convolution, Digital arithmetic.

1. INTRODUCTION

Convolutional neural networks (CNNs) have been widely adopted in recent computer vision applications due

to their superior prediction capabilities, with researchers gravitating toward larger networks with higher

computational complexity and memory requirements. Field-programmable gate array (FPGA)

implementations have demonstrated improved latency and power efficiency compared with central

processing unit (CPU) and graphics processing unit(GPU) technologies.

In contrast to CPU/GPU technologies, they allow customized data paths, enabling improved parallelism and

less data movement. This design flexibility poses an opportunity to optimize system performance through

custom hardware tailored to the application. Optimizations via compression, quantization, and neural network

layer explorations have been utilized to reduce complexity and boost performance. In particular, quantizing

inference networks to very low precision, such as constraining weight representations to binary or ternary

values, both reduces memory requirements and enables multiplications to be replaced with the exclusive

NOR operation. However, the disadvantage of extreme quantization is that the networks typically incur

significant accuracy degradation for very low precisions , especially for complex problems.

One limitation with traditional fixed-point quantization is that it has a uniform distribution. However, it has

been demonstrated that a non-uniform distribution with the same number of potential weights can result in

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 333

better accuracy, provided the distribution appropriately matches the desired full-precision neural network

weight distribution. It follows that reducing precision may not be the best method to save silicon area.

Reconfigurable constant coefficient multipliers (RCCMs) are an alternative method to reduce FPGA

resources through time multiplexing and resource sharing. They are usually realized using additions;

subtractions, bit shifts, and multiplexers, meaning that multiplies are implemented without requiring dig ital

signal processing (DSP) blocks on an FPGA. However, RCCMs are restricted to a given number of target

coefficients; this has restricted their use to DSP application domains including digital filtering and linear

transformations.

Following properties of many modern high-performing CNN architectures make their hardware

implementation feasible:

• High regularity: all commonly used layers have similar structure (Conv3x3, Conv1x1, Max-Pooling);

• Typically small size of convolutional filters: 3 × 3;

• ReLU activation function (comparison of the value with zero): easier to compute compared to previously

used Sigmoid and Tanh functions.

Due to high regularity, size of the network can be easily varied, for example, by changing the number of

convolutional blocks. In the case of field programmable gate arrays (FPGAs),thisallows to program the

network on different types of FPGAs, providing different processing speed.

For example, implementation of higher number of convolutional blocks on an FPGA can directly lead t o a

speed-up in processing. Related direction in neural network research considers adapting them for the use on

mobile devices. However, they are still executed at the software level and use floating -point calculations. For

some tasks such as real-time video analysis that requires processing of 30 frames per second mobile networks

still can be not fast enough without further optimization

In order to use an already trained neural network in a mobile device, a set of optimizations can be used to

speed up computation. There exist a number of approaches to do so, including weight compression or

computation using low-bit data representations. Since hardware requirements for neural networks keep

increasing, there is a need for design and development of specialized hardware block for the use in ASIC and

FPGA. The speed up can be achieved by following:

• Hardware implementation of the convolution operation, which is faster than software convolution;

• using fixed-point arithmetic instead of floating-point calculations;

• reducing the network size while preserving the performance;

• Modifying the structure of network architecture while preserving the same level of performance and

decreasing the footprint of the hardware implementation and saved weights.

Figure 1. DE0-Nano development board and external devices

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 334

2. BACKGROUND

2.1 Convolutional Neural Networks

CNNs are biologically inspired networks that process input tensors (multidimensional arrays) of (w, h, d)

dimensions in a transnationally invariant manner [1]. Typically, w and h are spatial dimensions and d is

the number of channels. Processing operations, such as convolution, pooling, and activation functions,

are applied in a series of layers, each of which transforms the input tensors from dimensions (w, h, d) →

(w, h, d).

Pooling layers are downsamplers of 2-D images. Max pooling layers provide a spatial maximum

function, which divides an input image into small sub tiles of a given window size and then replaces these

with the maximum value in the subtile. An average pooling layer is similar; however, it finds the average

in the subtile rather than the maximum.

2.2 Implementation requirements

To demonstrate our approach, we implement a solution for the problem of recognizing handwritten digits

received from a camera in real time. The results are displayed on an electronic LED screen. The minimal

speed of digit recognition should exceed 30 FPS, that is, a neural network should be able to process a

single image in 33ms. The resulting hardware implementation should be ready for transfer to separate

custom VLSI device for mass production.

3. PROPOSED DESIGN

3.1 CNN architecture design

We searched for building blocks that efficiently map to the logic fabric of an FPGA. Our designs are

optimized for the latest Xilinx FPGAs. For these devices, a slice provides either six-input LUTs with a

single output (used in Topology A) or two five-input LUTs with shared inputs (used in Topology B). As

such, we designed our base topologies to ensure the MUX’es fit into the same LUTs that are required for

the adders. Fig. 2 shows the two base topologies used to build the RCCM units in this article. Each of

these consists of an adder with at least one input being the output of a MUX. However, to ensure the

topology fits into a single LUT, this comes at a cost of less select inputs. Through our experimentation,

we found that the chosen topologies were sufficient for creating RCCMs with a desired coefficient set to

simplify the training process.

All contemporary FPGA devices are similar in that their logic blocks consist of LUTs followed by a fast

carry chain. Hence, a simple adder can be extended by MUXes with no additional cost for certain MUX

sizes when carefully selected for the target device. The detailed slice mappings of our base topologies are

shown in Fig. 3, highlighting how our design consumes exactly the same silicon area as a traditional

ripplecarry adder with the same word size on that FPGA (which would only implement the XOR gate to

complete the carry logic to a full adder).

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 335

Figure 2. Base topologies used to build reconfigurable multipliers.

a) Topology A.

b) Topology B.

Figure 3. Bit-level FPGA slice mapping of base topologies

(a) Topology A.

(b) Topology B.

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 336

3.2 FPGA-based hardware implementation

In FPGA-based realization, SDRAM is used to store a video frame from camera. In SDRAM memory on

De0-Nano card used in this study, two equal areas for two frames are allocated - current frame is

recorded in the first area, and previous frame is read from the other memory area. And after the output is

finished, these areas change their roles. When using SDRAM memory in this study, we consider two

important issues. First, memory operates at high frequency of 143MHz, thus, we face one more problem

of transferring of data from the clock domain of camera to the clock domain of SDRAM. Second, in order

to achieve maximum speed, writing to SDRAM should be performed by whole transactions, or in “burst”.

FIFO directly built in FPGA memory is the best way to solve both of these problems. Basic idea is that

camera fills FIFO at low frequency, then SDRAM controller reads data at high frequency, and

immediately writes them to memory in one transaction. Data output to TFT screen is organized in the

same way. Data from SDRAM are written to screen FIFO, and then are read at the frequency of10MHz.

After FIFO has been cleared, the operation is repeated. Process of frame data transfer through different

memory locations is shown in Fig.4A, and the functional design of the project using Verilog modules is

shown in Fig.4B.

 Figure 4. Data flow in FPGA implementation:

A. Frame data transfer; B. Functional design of the project using Verilog modules.

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 337

Figure 5. Schematic representation of the hardware implementation

A picture from the camera, after passing through SDRAM, is displayed on the screen as

is, and also is fed to neural network for its recognition through block that converts image to

grayscale and decreases resolution. When neural network operation is finished, the result is

also output directly to the screen. Since the camera has a large number of operation

parameters, they are incorporated in a separate module that uploads them to the camera

before the operation starts. Hardware implementation of the neural network is presented

schematically in Fig.5.

After conversion, an input image is stored in the database, which also stores weight coefficients

for each layer that were calculated and wired-in beforehand. As necessary, data from there is

downloaded through the controller to the small memory unit for the further use. Everything in neural

network is controlled by the main module that keeps the sequence and parameters of network layers.

In the hardware realization, not all layers of neural network under test are used; some of them are

replaced by other functions. For example, there is no ZeroPadding layer, instead of it module of

intermediate image edge detection is applied, which allows to reduce chip memory usage.

GlobalMaxPooling layer is replaced by the function from the Convolution layer that immediately

gets GlobalMaxPooling layer result by finding the largest value in the intermediate image. The rest

of the layers are implemented as separate modules. Since Convolution and Dense layers can use

convolutional blocks for calculations, both of them have access to these blocks. Modules contain

ReLU activation function, which is used as needed. This modified activation is realized as a separate

module, from which results of the neural network operation are received. To implement the neural

network, the specialized Convolution block is used, which performs convolution of 3 × 3 in one

clock cycle (we can make such block for other dimensions 4×4, 5×5, etc., if we have those in the

network). This block is a scalar product of vectors and contains 9 multiplications and 8 additions.

The same block is used for calculations in the fully connected.

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 338

4. PERFORMANCE RESULTS

Number of

LUT’s

Utilized

Number of

DSP slices

utilized

Delay

Static power

dissipation

Dynamic

power

dissipation

Total power

dissipation

CNN 112 22 18.936 ns 0.791 W 27.181 W 27.972 W

DCNN 56 26 16.779ns 0.791 W 25.952 W 26.743 W

Modified

DCNN
8 28 14.156 ns 0.791 W 23.780 W 24.571 W

Table -I Comparison of different CNN architectures

Figure 6. Simulation result of the proposed design

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 339

Figure 7. Summary report of the proposed design

Figure 8. Power report of the proposed design

5. CONCLUSION

Vol-8 Issue-5 2022 IJARIIE-ISSN(O)-2395-4396

18163 ijariie.com 340

There are many possible ways to improve performance of hardware implementations of neural networks.

While we explored and implemented some of them in this work, only relatively shallo w deep neural

networks were considered, without additional architectural features, such as skip connections.

Implementing even deeper networks with multiple dozens of layers is problematic, since all layer weights

would not fit into the FPGA memory and will require the use of the external RAM, which can lead to the

decrease in performance. Moreover, due to the large number of layers, error accumulation will increase

and will require wider bit range to store fixed- point weight values. In the future, we plan to consider

implementing on FPGA’s specialized lightweight neural network architectures that are currently

successfully used on mobile devices. This will allow using the same hardware implementation for

different tasks by fine-tuning the architecture using pre-trained weights.

REFERENCES

[1] AysegulDundar, Jonghoon Jin, Berin Martini, and Eugenio Culurciello,” Embedded Streaming

Deep Neural Networks Accelerator With Applications” Senior Member, Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2. Jun. 2016, pp. 2169–2178.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 25. 2012, pp. 1097–1105.

[3] H.Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput.

Vis. Image Understand., vol. 110, no. 3, pp. 346–359, 2011.

[4] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-recursive deep

learning for 3D object classification,” in Proc. ,oogfq`. Neural Inf. Process. Syst., 2012, pp. 665–673.

[5] D. Grangier, L. Bottou, and R. Collobert, “Deep convolutional networks for scene parsing,” in

Proc. ICML Deep Learn. Workshop, 2009, pp. 1–2.

[6] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust object recognition with

cortex- like mechanisms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar.

2007.

[7] M. D. Zeiler and R. Fergus. (2013). “Visualizing and understanding convolutional networks.”

[Online]. Available:thtp://arxiv.org/abs/1311.2901

[8] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.

(2012). “Improvingneuralnetworksbypreventingco-adaptationoffeaturedetectors.”[Online].

Available: http://arxiv.org/abs/1207.0580

[9] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled Newton methods,” in Proc.

Adv. Neural Inf. Process. Syst., 2015, pp. 3034–3042.

[10] M. A. Erdogdu, “Newton–Stein method: A second order method for GLMs via Stein’s lemma,” in

Proc. Adv. Neural Inf. Process. Syst., vol. 28. 2015, pp. 1216–1224.

[11] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello, “Hardware

accelerated convolutional neural networks for synthetic vision systems,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), May/Jun. 2010, pp. 257–260.

[12] A. Krizhevsky. (2014). “One weird trick for parallelizing convolutional neural networks.”

[Online]. Available:http://arxiv.org/abs/1404.5997

[13] S.Chetluretal.(2014).“cuDNN:Efficientprimitivesfordeeplearning.”[Online]. Available:

http://arxiv.org/abs/1410.0759

[14] C. Farabet, C. Poulet, and Y. LeCun, “An FPGA-based stream processor for embedded real- time

vision with convolutional networks,” in Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops (ICCV

Workshops), Sep./Oct. 2009, pp. 878–885.

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1410.0759

