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Abstract - One of the key environmental issues has been trash management, which has negative consequences on 

both society's health and the environment's delicate balance. The traditional trash management system can be 

replaced with a real-time monitoring system thanks to technological advancements, enabling improved waste 

management. Using a deep learning model, the project's goal is to create a smart trash management system. The 

pre-trained detection model  with photos is used to carry out object detection. With a classification accuracy rating 

of around 90%, CNN achieves great performance. In this paper, we proposed to use the ResNet algorithm for 

efficient waste image classification. The ResNet algorithm allows for the training of extremely deep networks 

without suffering from the vanishing gradient problem,making  

it highly effective for image classification tasks.  
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                  I. INTRODUCTION 

 

The management of garbage is a major global concern, and the environment is seriously threatened by the growing 

volume of waste. A Convolutional Neural Networks (CNN)-powered Intelligent Waste Classification System 

(IWCS) is one of the creative alternatives offered by modern technology to address this problem. The IWCS idea, its 

significance in waste management, and how CNNs might be used to improve waste sorting and recycling  

procedures are all covered in this project. The process of trash management must begin with waste classification. An 

environment that is more sustainable and environmentally friendly is made possible by accurate waste sorting, 

which increases recycling efforts and decreases the amount of waste dumped in landfills. To automatically recognize 

and classify various waste products, an intelligent waste classification system makes use of deep learning 

techniques
[56]

. CNNs are a kind of deep learning model created for tasks requiring image identification. They have a 

multi-layered design that derives hierarchical features from images and is modeled after the human visual system. 

They are therefore especially well -suited for jobs requiring picture categorization, such as garbage 

classification.Automatic recognition and detection of waste from images has become a popular choice to replace 

manual waste sorting, thanks to the rapid advances in computer vision and artificial intelligence. Many machine 

learning algorithms have been proposed to improve the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of automatic waste classification 
[12,13,14]

. 
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       Figure 1. Waste classification using CNN 

 In recent years however, deep neural networks
[15]

, especially convolutional neural networks (CNN), have proven to 

be very effective in learning from existing data, achieving remarkable results in image classification
[14,16,17,18]

. Thus, 

by taking images of solid waste as input data, CNNs can automatically classify waste into the relevant categories. 

Figure 1 depicts the waste classification system using CNN layers..
[68]

ResNet is an invaluable tool in garbage 

classification and other computer vision applications due to its innovation in managing deep networks and its 

capacity to capture subtle patterns. You can develop precise and effective waste classification systems that support 

environmental sustainability by taking advantage of ResNet's advantages. 

            II. LITERATURE SURVEY 

Sujan Poudel and Prakash Poudyal(2022),  have pre-trained CNN model such as InceptionV3, InceptionResNetV2, 

Xception, VGG19, MobileNet, ResNet50 and DenseNet201  and performed fine-tuning on the waste dataset. 

Among these models, the VGG19 model performed with less accuracy, whereas the InceptionV3 model performed 

with high learning accuracy.A total of 101, 102, and 95 images have been classified correctly by 

InceptionResNetV2, DenseNet201, and ResNet50 out of 140 images which means InceptionResNetV2 and 

DenseNet201 have almost similar performance on testing data but DenseNet201 have better validation accuracy
[1]

.In 
[2]

, Adedeji Olugboja, Zenghui Wang(2019),proposed an intelligent waste material classification system, which is 

developed by using the 50-layer residual net pre-train (ResNet-50) Convolutional Neural Network model which is a 

machine learning tool and serves as the extractor, and Support Vector Machine (SVM) which is used to classify the 

waste into different groups/types such as glass, metal, paper, and plastic etc. The proposed system is tested on the 

trash image dataset which was developed by Gary Thung and Mindy Yang, and is able to achieve an accuracy of 

87% on the dataset. The separation process of the waste was faster and intelligent using the proposed waste material 

classification system without or reducing human involvement. Nonso Nnamoko et al.,(2022)  employed two picture 

resolution sizes (i.e., 225264 and 8045) to examine the performance of a five-layer convolutional neural network in 

terms of development time, model size, predictive accuracy, and cross-entropy loss in order to evaluate the 

computational cost issue. They reason that a model trained with lower picture resolution will be more lightweight 

and/or accurate than one trained with higher image resolution
[3]

. Nasir, I., & Aziz Al-Talib, G. A. (2023) have 

studied that the efficiency and accuracy of conventional trash classification techniques are both low. Waste 

classification is the process of identifying and categorizing different types of waste based on their characteristics
[4]

. 

Accurate waste classification is important for a number of reasons, including supporting recycling and other forms 

of resource recovery, protecting the environment and human health, and reducing the costs of waste management. 
[5]

Haruna Abdu, Mohd Halim Mohd Noor (2022), have reviewed various image classification and object detection 

models, and their applications in waste detection and classification problems, providing an analysis of waste 

detection and classification techniques with precise and organized representation and compiling over twenty 

benchmarked trash datasets. Ali Usman Gondal et al.,(2021) have presented  the idea of a real-time smart waste 

classification model  that uses a hybrid approach to classify waste into various classes. Two machine learning 

models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The 

multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies 

the class of non-metal waste
[6]

. 
[10]

Yi Zhao etal., have proposed an intelligent waste classification system based on 

the improved MobileNetV3-Large. The network model is enabled to classify garbage images through deep separable 

convolution, inverse residual structure, lightweight attention structure and the hard_ swish activation 

function.
[9]

Shuang Wu et al.,(2021) used CNN (convolutional neural network) model  to classify garbage images, 

and the final accuracy is 85.32%. This model is used to assist people with garbage classification, reducing the time 
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and energy needed for the classification and identification, so as to achieve the purpose of promoting garbage 

classification.
[8]

Suganda Girsang, A et al.,(2023) conducted research to collect datasets with two categories, namely 

organic and inorganic, which were divided into three parts, namely training, testing, and validation and used 

hyperparameter testing, preprocessing to find the best learning outcomes. The models used are MobileNet, VGG16, 

and Xception.
[7]

Nguyen Ngoc Bao, Nguyen Ngoc Le Minh (2022) aimed to present the best solution to solve the 

waste management problem. In the waste management category, sorting by type of garbage is one of the most 

essential steps. By using a camera, convolutional neural network (CNN), a dataset of various training and testing 

pictures, detection and classification can occur with the accuracy of 99%. The robotic arm is added to grab the 

garbage. 

 

    III.COMPONENTS OF WASTE CLASSIFICATION 

Deep Learning Framework: This concept is employed in CNN's training. The framework typically comprises of a 

collection of algorithms and tools for optimizing the network's performance during training. 

Neural Network: In order to categorize the items in the photos and movies, this network is used. Neurons in the 

network are normally coupled to one another and are utilized to process input data and produce outputs. 

 

 
    Figure 2. Components of waste  classification  

 

Convolutional Neural Network: This network is used to classify the objects in the images and videos. The CNN 

typically consists of convolutional layers that are used to extract features from the input data and generate an output. 

This output is then used to classify the objects in the images and videos. 

ResNet: The ResNet type of CNN learns a residual mapping from the input data to the intended output based on the 

idea of residual learning. This enhances the effectiveness of the model and lowers the complexity of deep network 

training. 

   

IV. METHODOLOGY PROPOSED 

 

Data Collection: A diverse dataset of different waste images are collected. The dataset consisted  of different waste 

images that we are going to classify.Alternatively, custom-collected images can also be used. This involves taking 

pictures of different types of waste, and then labeling them accordingly. This approach can provide a more accurate 

and diverse dataset, as it captures the real-world environment. Annotating those waste images using appropriate 

labels indicating the waste type (eg., plastic, paper, glass,vegetables and fruits waste etc..) as shown in Figure 3. 

 

 
 Figure 3. Different types of wastes used for classification 

 

Preprocessing: Using data augmentation, a collection of strategies for boosting the amount of data by adding 

slightly changed copies of the original data, to improve the size and quality of the dataset. When training a machine 
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learning or deep neural network model, this is a typical technique used to reduce overfitting
[25]

. The 

ImageDataGenerator class offered by the Keras deep learning neural network framework provides the foundation for 

the augmentation described in this paper 
[34,58]

.  

 
Figure 3. ImageDataGenerator for Data    Augmentation 

 

We specifically apply adjustments to the photos (such as image rotation and height and width shift) using the 

ImageDataGenerator class. Figure 3 depicts how the ImageDataGenerator class of Keras works. We are splitting the 

dataset into training, validation and testing sets 

CNN Architecture: After preprocessing, the next step is to pick a CNN Architecture that goes well with classifying 

waste images. We have chosen ResNet (Residual Network) for classification
[39]

. Pretrained ResNet model weights 

from a source like ImageNet have been loaded. In deep learning packages like TensorFlow or PyTorch, these 

models can be discovered. We added a new classification head that corresponds to the number of garbage categories 

in our dataset after removing the old classification head (completely connected layers) from the pretrained ResNet 

model
[24]

. We employed CNN layers as feature extractors to extract hierarchical and discriminative properties from 

the garbage images. For multi-class classification,  a suitable loss function, such as categorical cross-entropy should 

be applied and  an optimizer such as Adam or SGD is used to adjust the model's weights throughout training
[47]

. 

Then, we overlay fully linked layers on top of the CNN and map the extracted features to the final waste 

classifications.Utilising activation functions (such as ReLU) to expedite training and improve convergence after 

each fully linked layer. 

Training: A big collection of photos labeled with the required objects must be used to train the model after it has 

been created. It is crucial to remember that the data must be balanced for the ResNet model to correctly learn to 

distinguish between the various classes. The data must then be fed into the ResNet model once it is ready. This can 

be carried either in batches or all at once, depending on the size of the dataset
[67]

. The model must then be trained 

using an appropriate optimizer, like Adam or SGD. The model's weights are continuously updated during the 

training phase so that it can learn to recognise the various items in the photos. 

Testing and Model Evaluation: The model can then be tested on the testing set to evaluate its accuracy. Various 

metrics such as precision, recall, and F1 score can be used to measure the performance of the model. By counting 

the number of images that are correctly categorized, we may evaluate the model's accuracy
[65]

. Additionally, the 

model can be tested on unseen data to evaluate its generalization ability. This will show us how well the model 

works with unobserved data.  

Fine-tuning: If necessary, fine tuning can be performed. This will help the model to adapt to the task of classifying 

wastes. 
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Figure 4. Fine-tuning the constructed model using image data 

 

There are various processes involved in fine-tuning a pre-trained ResNet model for garbage picture categorization. 

The original model must first be loaded before a new layer with the necessary number of outputs (one for each waste 

type) is substituted for the final layer.Figure 4 shows how fine tuning is performed using the constructed model. The 

weights of the pre-trained layers must then be frozen in order to prevent updating of those weights during 

training
[44]

. A small subset of the available data must then be used to fine-tune the model in order to prevent 

overfitting. 

 

V.RESULTS AND DISCUSSIONS 

 

The results of the analysis for the designed framework were shown below, and the same output data had been 

examined in several ways to get various results.Precision was 88.54%, recall was 87.62%, F1-score was 87.12%, 

MDR was 12.37%, and FDR was 13.37% for our framed CNN architecture. 

 

 
  Figure 5. Outcome of the proposed CNN Architecture 
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Figure 6. Confusion Matrix for the proposed Architecture 

 

VI. BENEFITS OF WASTE CLASSIFICATION USING CNN 

 

Precision and Accuracy: As CNNs are so good at image recognition tasks, they can accurately and precisely 

categorize different types of garbage. Complex patterns and traits that are challenging for traditional sorting 

approaches to identify can be recognized by them. Due to this high level of precision, contamination is reduced and 

recycling rates are raised through proper identification and placement in the recycling stream. 

Effectiveness and Swiftness: Intelligent trash classification based on CNN is a lightning-fast procedure. In contrast 

to manual sorting, which can be labor and time-intensive, an IWCS can process waste materials fast, making it a 

good fit for high-throughput garbage sorting facilities. The system's efficiency and speed improve waste 

management processes and reduce processing expenses. 

Consistency and Reliability: Manual sorting is prone to human mistake, which could result in inconsistent waste 

classification. On the other hand, CNN-based systems deliver reliable and repeatable results. Once trained, the 

model's performance remains constant over time, ensuring a trustworthy recycling process. 

Environmental Impact: By correctly classifying waste, an IWCS effectively encourages recycling and lessens the 

amount of trash that is sent to landfills. This immediately aids in lowering the negative environmental effects of 

discarding trash, protecting natural resources, and minimizing pollution. 

Cost-Effectiveness: Although buying hardware and software may be required for the initial deployment of an 

IWCS, the long-term benefits surpass the immediate costs. The technique streamlines waste sorting operations, 

lowering labor costs and increasing recycling revenue. By lowering the requirement for landfill management and 

disposal of trash, better waste management can help lower overall expenditures. 

 

 

 

     

VII. APPLICATIONS OF WASTE CLASSIFICATION SYSTEM USING CNN 

 

Automated Waste Sorting Facilities: The adoption of an Intelligent Garbage Classification System is viable in 

these facilities. They can swiftly and accurately differentiate between different types of waste, such as plastics, 

metals, paper, glass, and organic waste. The effectiveness of waste management operations as a whole is increased 

because of this automation, which increases sorting efficiency and necessitates less physical work. 

Recycling Facilities: An IWCS can be very useful in separating recyclables from other sorts of waste at recycling 

facilities. By recognizing and classifying a number of recyclable items, including PET bottles, aluminum cans, and 

cardboard, the system helps to maximize recycling efforts and enhances the purity of recovered materials. 

Smart Recycling Bins: Intelligent Waste Classification can be incorporated into smart recycling bins that are placed 

in public areas, businesses, and homes. These bins aid in raising recycling participation and environmental 

awareness by classifying and separating recyclables from non-recyclable garbage. 

Industrial Waste Management: Controlling waste streams in the industrial sector is possible with intelligent waste 

classification. Many companies produce a variety of waste products, and an IWCS can help detect and separate 

hazardous and non-hazardous waste to guarantee proper disposal and conformity to environmental regulations. 

Campaigns for Education and Public Awareness: IWCS can be used as a tool in campaigns for education and 

public awareness to enlighten the public about correct waste sorting techniques. By demonstrating garbage 
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classification and emphasizing the importance of recycling, the strategy can raise awareness and encourage proper 

trash disposal among the general population. 

 

VIII. CONCLUSION 

 

Convolutional Neural Networks (CNNs) were shown to be effective in this study's waste image categorization, 

highlighting its potential to address the urgent problem of garbage management. CNNs provide a promising way to 

automate and improve garbage sorting procedures by clearly discriminating between distinct waste kinds. When 

compared to conventional techniques, the model's capacity to learn detailed features from garbage photos greatly 

increases accuracy and efficiency. The results highlight the significance of utilizing cutting-edge technologies for 

environmental sustainability. While this study demonstrates a successful use of CNNs for waste categorization, 

subsequent research might look into real-time implementation optimisations and broaden the dataset to include a 

variety of garbage scenarios. At the end of the day, incorporating CNN-based waste categorization systems into 

waste management infrastructure could revolutionize garbage sorting procedures, promoting cleaner ecosystems and 

resource-efficient societies. 
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