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ABSTRACT 
In approximation theory, the results, which determine structural characteristics of functions from their 

degree of approximation, are known as inverse theorems. The study of direct and inverse theorems remains 

an active area of research. This research now centers on approximation by members of various non-

classical and nonlinear classes such as wavelets, shift-invariant subspaces, radial basis functions, ridge 

functions, neural nets, multivariate splines and the like. In the present paper, we study inverse 

approximation property of Beta-Szasz operators in simultaneous approximation.  
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1. INTRODUCTION 

 
In approximation theory, there are many-many generalizations of direct and inverse results [1, 4, 6, 7, 

10, 12]. The excellent textbooks of Timan [11] and of DeVore and Lorentz [3] contain an abundance of 

information on direct and inverse theorems for approximation by algebraic and trigonometric polynomials. 

Recently, Kumar [8] proposed a new sequence of mixed summation-integral type operators and studied 

direct approximation results for these operators in simultaneous approximation. In the present paper we 

study inverse approximation estimate for these operators, which were defined as 
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It is easily checked that the operators nB  are linear positive operators and it is obvious that 

1),1( xBn . Alternately the operators (1.1) may be written as 
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As far as the rate of approximation is concerned the operators (1.1) are just like exponential type 

operators [9]. But the operators nB  are not exponential type operators, since they do not satisfy the 

following condition: 

 ))(,(
)(

),( xttxW
xP

n
txW

x
nn 




, )(xP  is a function of x.         (1.2) 

The above equation (1.2) is the necessary condition for the operators to be of exponential type. The 

above condition (1.2) is frequently used in the analysis to prove the inverse theorem for exponential type 

operators. In the present paper we study an inverse result in simultaneous approximation for the operators 

(1.1).  

By 0C , we denote the class of continuous functions on the interval ),0(   having a compact support 

and 
rC0  is r times continuously differentiable functions with 00 CC r  . Suppose 
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differentiable functions f with supp f ],[ ba  , the Peetre’s K-functional are defined as 
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2. AUXILIARY RESULTS 
 

This section consists of the following preliminary results, which will be helpful to prove the inverse 

approximation theorem in next section. 

 

Lemma 2.1 [5].  For }0{ Nm , if the m-th order moment be defined as 
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Lemma 2.2. Let the function
0

, ),( Nmxmn  , be defined as 
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and there holds the recurrence relation 
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Consequently for each ),0[ x  we have from this recurrence relation that 
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Proof. The values of )(),( 1,0, xx nn   easily follow from the definition. We prove the recurrence 

relation  
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This completes the proof of recurrence relation. The values of )(2, xn , )(, xmn  follow from the 

recurrence relation.  

 

Lemma 2.3 [5]. There exist the polynomials )(,, xQ rji  independent of  n and k such that 
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Lemma 2.4. Let 0< <2 and  bbbaaa0 . If 0Cf   with  
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Next, it is sufficient to show that there exists a constant 6M  such that for each 
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Also using linearity property, we have 
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Applying Lemma 2.3, we get 
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 Therefore by Schwarz inequality and Lemma 2.1, we obtain 
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where the constant 9M  is independent of  f and g.  

 Next by Taylor’s expansion, we have 
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where   lies between t and x. Using above expansion we get 
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 Also by Lemma 2.3 and Schwarz inequality, we have 
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 Combining the estimates of (2.2)-(2.5), we get (2.1).  

 The other consequence follows from [2].  

 This completes the proof of the lemma. 

  

 Lemma 2.5. Let bbbaaa   and   0

)( Cf r   with  supp ],[ baf   then if  
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It follows that ),,1,( baLizf   i.e. ).,,( baLipf   

 

3. INVERSE APPROXIMATION THEOREM 
 

In this section, we shall prove our main result, namely, inverse approximation theorem, which is stated 

as  
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 Theorem: Let  12210,20 bbaa  and suppose ),0[  Cf . Then in the 
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Following [8, Th. 3.3], we obtain 
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Next following [8, Th. 3.2], Schwarz inequality, Taylor’s expansion of f and g and Lemma 2.2, we get 
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Finally applying Leibnitz theorem, we obtain 
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)( 2/ nO , uniformly in ],[ bax  . 

Combining the estimates of 1J , 2J  , 3J and 4J  , we get 
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Next following [8, Th. 3.2],  we get 
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where   is chosen in such a way that   20 . 

Finally combining the above estimates we get 
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This completes the proof of the theorem. 
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