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ABSTRACT
In approximation theory, the results, which determine structural characteristics of functions from their
degree of approximation, are known as inverse theorems. The study of direct and inverse theorems remains
an active area of research. This research now centers on approximation by members of various non-
classical and nonlinear classes such as wavelets, shift-invariant subspaces, radial basis functions, ridge
functions, neural nets, multivariate splines and the like. In the present paper, we study inverse
approximation property of Beta-Szasz operators in simultaneous approximation.
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1. INTRODUCTION

In approximation theory, there are many-many generalizations of direct and inverse results [1, 4, 6, 7,
10, 12]. The excellent textbooks of Timan [11] and of DeVore and Lorentz [3] contain an abundance of
information on direct and inverse theorems for approximation by algebraic and trigonometric polynomials.
Recently, Kumar [8] proposed a new sequence of mixed summation-integral type operators and studied
direct approximation results for these operators in simultaneous approximation. In the present paper we
study inverse approximation estimate for these operators, which were defined as

B.(f,%) = n%l gbnyv(x) ! 5, OFMdt  xe[0,0) 1)
where f € C [0,00) ={f € C[0,0): f(t) < Mt” forsomeM >0, y >0},
v-1 \
b, () X s, () =e™ (M

X B L VAT x) T
and B(n+Lv)=nl(v-D!/(n+Vv).

It is easily checked that the operators B, are linear positive operators and it is obvious that

vl

B, (1, x) =1. Alternately the operators (1.1) may be written as

B (f,X)= TWn(x,t) f (t)dt,
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where W (x,t) :n%léb”(x)s”” ®).

As far as the rate of approximation is concerned the operators (1.1) are just like exponential type
operators [9]. But the operators B, are not exponential type operators, since they do not satisfy the

following condition:

0 n
—W, (X,t) =——W,_ (x,t)(t—x), P(x) isa function of x. (1.2)
OX P(x)

The above equation (1.2) is the necessary condition for the operators to be of exponential type. The
above condition (1.2) is frequently used in the analysis to prove the inverse theorem for exponential type
operators. In the present paper we study an inverse result in simultaneous approximation for the operators
(1.2).

By C,, we denote the class of continuous functions on the interval (0,00) having a compact support
and C, is r times continuously differentiable functions with C; < C,. Suppose
G ={g:geC;? supp gc[a’,b’], where [a’,b]c(a,b)}. For r times continuously

differentiable functions f with supp f < [@’,b"], the Peetre’s K-functional are defined as

K, (£ f.a,b) = inf @ =g . +&{o?]. .. +]o

el

(r+2)

il o<e<t

Cla'b] Cla'b] Ccla'b]

2. AUXILIARY RESULTS

This section consists of the following preliminary results, which will be helpful to prove the inverse
approximation theorem in next section.

Lemma 2.1 [5]. Form € N {0}, if the m-th order moment be defined as

1 & Pl
U X)=——>hb (X)) —==x| ,thenU_.(X)=1U ,(X)=0 and
n,m( ) n+1kz=1: n,v( )(n+2 ) en n,O( ) =1, n,l( ) an

(N+2U, s (X) = XA+ X)[UE () +mU . ()]
Consequently, U, . (X) = O(n’[(””l)’z] )

Lemma 2.2. Let the function £z, ., (X),m € N°, be defined as
_ " S mof "
/un,m (X) _m; nyv (X)£ Sn,v (t)(t — X) t.
2(x+1)
Then lun,O (X) =ll /un,l(X) = T
and there holds the recurrence relation

N e (X) = X+ X)L () + Mty 3 OOT+ Mt gy (X) +[M 4203 + D)z (%)
Consequently for each X € [0,20) we have from this recurrence relation that

1y () = O(n—[(m+1)/2] )

Proof. The values of s, (X), 1, ,(X) easily follow from the definition. We prove the recurrence

X(X+2)Nn + 6(1+x)*
nZ

and 4, (X) =

relation
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v=1

@04, 00 =" 3 X0 90 s, (O 0"t

0 S @ 0B, (0] 5, (O~ )™l
n+1 B

v=1
Now using the identities X(1+ X)br(]l\), (X)=((v=1)—(n+2)x)b,,(X) and
t S,(]l\), (t) =[(v—nt]s,, (t), we obtain
XL+ LU, () + mat, £ (X)]

g T m
1 10200, (0 s, (Ot -0t

=nL+1 g:bnyv(x)z[(v —nt) +n(t— X) = L+ 2x)]s, , (O)(t - X)"dt

=S, (O[S9 (0 )™ dt+ 1144, 0 (X) = @+ 2041, (0
n+1¢3 - 8 i '

o0

=3, (0] &0 %)™ dt +
n+1¢s - 5

+Nn ;un, m+1 (X) - (1+ 2X):un,m (X) .
AN (m + 1):un,m (X) + r]:un,erl (X) — mX/un,mfl (X) - (1+ 2X) /un, m (X)
This completes the proof of recurrence relation. The values of ﬂn,z(x), ,un'm(x) follow from the

DS b (0 SE0 - X)"

n+1¢

recurrence relation.

Lemma 2.3 [5]. There exist the polynomials QH’r (X) independent of nand k such that

{x@1+x)} D'[b,,(X)]= Z(n +2)'(v-1—-(n+ 2)X)jQi’j], (x)b, , (x), where D = %

Lemma 24. Let O<a<2 and O<a<a'<a’"<b"<b'<b<ow. If feC, with
") o _ Afn-22
B (f,9) = T, =0n"2). then

K (& ) =My {2 +n&K, (n, )},
Consequently K, (&, f) <M &2, M, > 0.
Proof. It is sufficient to prove
K.( f)= M&_){n_”‘/2 +n&K, (n™, f)} for sufficiently large n.

Because supp f < [a”,b"], therefore by [8, Th.3.2], there exists a function ) € G i=r,r+2
such that

supp f < [a”",b"] and ‘

<M,n*!
Clab]

B (f,¢)-h"|
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Therefore

K. (S, ) -

re[BO(t,9)

Next, it is sufficient to show that there exists a constant M 4 such that for each g € G ®)

Cla'b]

B (f )

Cla' b1 ‘ Cla'b] }

(r+2) < i GG A (r+2) }
HB" (f ’.)HC[a',b'] < Mgn ‘f 9 Cla',b'] Hg ‘C[a',b'] 2.1)
Also using linearity property, we have
(r+2) (r+2)
B” (f’.)‘ Cla'b] — -0 )HC[a b'] ‘ n (g'.)HC[a’,b'] (2.2)
Applying Lemma 2.3, we get
aHZ ‘Qi,j,r+2 (X)

W_ (x,t)dt < n'k—nx’ ————
gt 3 kol

i,j>0
+ (_n)(_n —1)...(—n —-r _1)(1+ X)—n—r—z

Therefore by Schwarz inequality and Lemma 2.1, we obtain
Br(]r+2)(f ce g,o)” < Mgan o g(r)

[lo

0

pn,k (X)J bn,k—l (t)dt

(2.3)

Cla'.b'] cla’.b']

where the constant M 4 is independent of fand g.

Next by Taylor’s expansion, we have
r+l

g ® ( ) (HZ) (él) r+2
900 = X550+ )

where ¢ lies between t and x. Using above expansion we get

r+ 1 r+
B 0Ny < ol

‘C[a',b’] (2.4)

[ aa W, (x D)t )"t

Cla’ b]
Also by Lemma 2.3 and Schwarz inequality, we have

(r+2) A H (r+2)‘
B“ (g’ ) cla’ b] 9 Cla',b1]

Combining the estimates of (2.2)-(2.5), we get (2.1).
The other consequence follows from [2].
This completes the proof of the lemma.

(2.5)

Lemma 25. Let a<a’'<a’"<b"<b'<b and f eC, with supp f =[a",b"] then if
f eCy(a,1@’,b’), we have f e Liz(e1,a’,b).
Proof. Let |5| <hand geG®" thenfor f e C, (2, ,a',b)
A% £ O ()| <[a% (0 =g )| +[a%9 " ()]
<2?f0 —g® 5*g? <4AM K, (62, f) < M,5°

It follows that f € Liz(a,1,a,b) ie. f e Lip*(a,a,b).

cla',b'] ‘C[a’,b’]

3. INVERSE APPROXIMATION THEOREM

In this section, we shall prove our main result, namely, inverse approximation theorem, which is stated
as

5765 www.ijariie.com 3792



Vol-3 Issue-3 2017 IJARIE-ISSN(O)-2395-4396

Theorem: Let 0<a <2,0<a <a, <b, <b, <o and suppose f € C [0,00). Then in the
following statements (i) = (ii)

0 [BO(F) -1 =0o(n"?)

iy £ eLip*(a,a,,b,).

Proof. Let us choose a’,a",b’,b" insuch away that a <a'<a"<a, <h, <b"<b' <b,.
Also suppose g € C;° with suppg < [a",b"] and g(x)=1 on [a,,b,]. For xe[a’,b’] with

d
= —, we have
dx

B, (fg,x) —(fg)"” (x) = D" (B, ((fg)(1) - (fg)(x), %))
=D (B, (f(1)(9® —9(x)).x))+ D" (B, (gC(f (1) — (X)), X))

=J,+J, ('say)
By Leibnitz theorem, we have

> .[Wn(x’t)f(t)(g(t)—g(x))dt

Y 4
Yoax”

-2 (lr JI WO ()L (o) - 0Ot

e axl’—i

- —ZU jg ) (BO(1,0) + W (D) F (GO - 90Ot

=J,+J,, say.
Following [8, Th. 3.3], we obtain

r-1 r . i
= —Z( jg = (x) £ D (x) + o(n"*'2) , uniformly in x €[a’,b’]
i—o \
Next following [8, Th. 3.2], Schwarz inequality, Taylor’s expansion of f and g and Lemma 2.2, we get

r @) (r=i)
J4 h g (X) f (X)r!+o(n71/2)

= il(r-i)!
:ZU 9 (x) £ 9 (x) + o(n"'2), uniformly in X  [a',b']

Finally applying Leibnitz theorem, we obtain

r r—i

S e 0
-3 J}[Wn”(x,t)m[g(t)(f(t)— f (0) e

= Z(.r g (0B (f,%) - (fg)” (%)

=ZU g () Y (x) - (fg)” (x) +o(n ")

=0O(n"*'?) , uniformly in x [a’,b"].
Combining the estimates of J,,J, , J;and J, , we get
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(r) _ (r) _ —al2
B (fg.) - (f9) "], =0 "2).

Thus by Lemma 2.4 and Lemma 2.5, we have (fg)" e Lip*(a,a’,b"), since g(x)=1 on
[a,,b,], it follows that f e Lip*(a,a,,b,). This proves implication (i) => (ii) for the case
O<a<l.

Now to prove the implication for 1< & < 2, for any interval [a,,b,'] < (a,,b,) and let a,,b, be
such that (a,,b,) < (a;,b,) and (a;,b;) = (a;,b,). Let & > Owe shall prove the assertion for
o < 2. From the previous case it implies that f (") exists and belongs to Lip(1—3J,a;",b;").

Let g € C, besuchthat g(x)=1on [a,,b,] and supp g < (a,,b,). Then for characteristic
function y, (t) of the interval [a;,b;,"], we have
8" (f9.) = (f) | ..., <[P"[B,(@OI(F O = F O .o,

+ DB, (f () (a®) - g())..)|

=1, +1,, say.

Cla; by]

Cla; b3]

Following [8, Th. 3.3], we have
1, < [D"[B,(9(x) f (t).)]- (fg)®

- i(irjg“-”Bé” (f.)- (1)

Cla;.b3]

Cla3 b;]

r

_ ZU]Q ) £ O _ (fg)®

i=0

+ O(n—aIZ) — O(nfaIZ) .
Cla; by]
Next following [8, Th. 3.2] and Leibnitz theorem, we have
r-1

= ZU]G OB (1.)+ BV (F((9() - 9())r. (1))

i=0

I,

Claz.b;]
=15+ 1l gy +O07T) (say).
Again following [8, Th. 3.3], we get

I, = —f[ir]g“-” () £ 9 (x) +0(N"“'2), uniformly in X € [a},b]].
Applying Taylor’s ex;l):aonsion of f, we have

L = [W (DI (00 - 900) 7, Ot
p+r+l £ (i) L )
=3 WO 06090 - 900z Ot

i=0

% (r) _f
+jvvn“>(x,t>((f - (X)](t—x)%g(t)—g(x))zz(t)dt

(& lying between t and x )

=15+ 1, say.
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Next following [8, Th. 32] we get
=3 W 0090’ (90) - 90)at+ 0t
i-0
(uniformly in x €[a;,b;1)
;+0(n™) (say)

Since g € C.°, therefore we can write

I,

vy U () 59 (':;!(X) Twnm (X, )t —x)""dt

o ' =

+Z f()(x) j W O (x,t)e(t, )t — x)"*dt
i=0
(where g(t,x) >0 as t — Xx)
= AP (say)
Following [8, Th. 3.2], we get
=3 970) 1
= m (r—-m)!

_ i(ng(m) (x) ™ (x) +O(n™).

Also 1, = O(n"*'?) uniformlyin X €[a;,b;].
Finally using mean value theorem and Lemma 2.3, we obtain

”IG”c:[a;,b;] = ans

2m-+s<r
m,s>0

r+O(n™)

|Qmsr( )| O+r+1
{X@+x)} 3 I (% t)|t |

AT~ f‘”(x)\|
r!

9'(m)| x, (t)dt

Cla3 b;]

— O(nfb‘/Z)

where & ischosen insuchawaythat 0< 0 <2—«.
Finally combining the above estimates we get

e -al2

‘ b]—O(n )
Since  supp fgc(a;,by), it follows from Lemma 24 and Lemma 25 that
(fg)"” e Lip*(a,a;,b;).  Furthermore, since g(x)=1 on [a,,b,], we have

f© eLip(a,a,,b,).
This completes the proof of the theorem.
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