
Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3672

Implementation of Consistency as a Service: Global

Auditing for Cloud Consistency

1
Priti Garud, 2Prof. S.P. Vidhate

2
HOD of Computer Engineering Dept.,VACOE,Ahmednagar

1
Vishwabharti Acadamy’s College of Engineering, Ahmednagar,Maharashtra

ABSTRACT

 Currently, cloud is the most important part of our life. Cloud is most popular because of huge advantages

such as it is portable we can able to access the cloud anywhere globally and it is used in different business purpose.

Duplication technology is used to reduce storage space so that cloud service provider maintains much duplication

and each piece of data are globally distributed on servers. The main issue of cloud is to handle duplication of data

which is too costly to achieve powerful consistency on worldwide. In this paper we present a novel consistency

service model which contains a large amount of data cloud and multiple audit clouds In the Consistency Service

model. A data cloud is maintain by CSP which is stands by Cloud service Provider and the number of user

constitute group and that group of user can constitute an audit cloud Which can check whether the data cloud

provides the valid level of consistency or not we suggest the global auditing architecture, and this architecture

requires a tightly synchronize clock for updating and download operation in the audit cloud. While loosely

synchronize clock for upload operation. Then, performed global auditing by global trace of operation through

randomly electing an auditor from audit cloud. Finally, we use a heuristic auditing strategy (HAS) to reveal as

many violations as possible.

KEYWORDS :-Cloud Storage, Global Consistency Auditing, Local Consistency Auditing, heuristic auditing

strategy (HAS).

1. INTRODUCTION
Cloud storage service has become more accepted due to their very huge advantages and when we say specific

style of computing where everything from computing power to infrastructure business apps are provided as a service

its computing service is known by cloud computing rather than product some other benefits of cloud is resource

provisioning scalability, flexibility and low cost. Amazon DB, Microsoft Azure Storage DB are the e.g. Of cloud

company which gives cloud services as per month or yearly basis and by using cloud storage services the customer

can able to access data store any where anytime by using any device and no need of capital investment on hard-

ware and access your data any time. The major problem in cloud is to handle dummies copy it is too costly to

achieve strong consistency worldwide. Many cloud service provider (CSP) uses weak consistency such as eventual

consistency to achieve good performance and high availability the user can able to see latest update by using ACP

principle (Availability consistency and partition.) The famous popular example of eventual consistency is Domain

Name System. Eventual consistency is not remedy for all difficulty for all application e.g. for interactive service the

strong consistency is required. Show the figure 1 for all details regarding systems. Suppose Alice and bob are work

under cloud storage service project. The data is replicated to 5 servers CS1, CS2, CS3, CS4 and CS5 respectively

uploaded the latest version of the requirement analysis to CS4 Alice call bob to download latest version so here

causal relationship is establish between bob read and Alice update. If the Cloud only provides eventual consistency

then bob gives the permission to access old version from CS5. So from this we can say different application has

different consistency by the following e.g.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3673

Figure -1: An Application that requires causal consistency

1) Monotonic read consistency while mail server has read your write consistency

2) Social networking services are the example of causal consistency. consistency plays important role in the

cloud storage to determines correctness as well as actual cost/transaction But here we shows novel

consistency service model for this situation this consistency service module contain multiple small audit

cloud and large data cloud. Audit cloud contain a group of users that working on the project and service

level agreement will be form between audit cloud & data cloud while Cloud service provider maintain data

cloud, which will take how much will be charged if the data cloud failed to SLA and what type of

consistency the data cloud should provide the implementation of data cloud is not visible to all users due to

virtualization technique.

To find out each replica in data cloud is newest one or not very difficult to users. We permit the user in audit

cloud to check cloud consistency by analyzing the trace interactive operation. We don’t require a global clock

among all users for total ordering of operation so we use loosely synchronized clock for our solution. For partial

order of operation each user maintain logical vector. So here we develop 2 level of Auditing Structure.

1. Local Auditing

2. Global Auditing

Local Auditing: The Local Auditing focuses on monotonic read and read your write consistency. This can be

performing by light-weight online algorithm the local auditing algorithm is online algorithm.

Global Auditing: This auditing focuses on causal consistency because causal consistency performs by constructing

directed graph. The directed acyclic graph is constructed then causal consistency is obtained. Finally we propose

analytical auditing strategy which applicable reads to reveal many unsuccessful results.

2. LITERATURE SURVEY

1. Don't settle for eventual: scalable causal consistency for wide-area storage with COPS:

 Geo-replicated, distributed data stores that support complex online applications, such as social networks,

must provide an "always-on" experience where operations always complete with low latency. Today's systems often

sacrifice strong consistency to get these goals, exposing inconsistencies to their clients and necessitating complex

application logic. In this system, this system identifies and defines a consistency model causal consistency with

convergent conflict handling, or causal that is the strongest achieved under these constraints.

 This system present implementation and the design of COPS, a key-value store that delivers this

consistency model across the wide-area. A key contribution of COPS is its scalability, which can enforce causal

dependencies between keys stored across an entire cluster, rather than a single server like as previous systems. In

COPS- GT, this system introduces get transactions in order to obtain a consistent view of multiple keys without

blocking or locking. The assessment shows that all operations are completed in a millisecond, provides throughput

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3674

similar to previous systems when using one server per cluster, and scales well as this system increase the number of

servers in each cluster.

2. Axioms for memory access in asynchronous hardware systems:

 Misra [2] is the first to present an algorithm for verifying whether the trace on a read/write register is

atomic. Following his work, Ref. [3] proposed offline algorithms for verifying whether a key-value storage system

has safety, regularity, and atomicity properties by constructing a directed graph. He presented an elegant algorithm

for checking atomicity. The algorithm proposed by [2] works by reasoning about the values of the register. The

observation is that, at some point during the span of an operation, the register assumes the value of the operation,

(either write or read). The system stipulates that a newly added value instead of the place of old value is not allowed

to re-appear in future. Therefore, if a trace violates this condition, then it is not atomic. Some- what surprisingly, if a

trace does not violate this condition, then it is atomic. In contrast, our algorithms reason about the operations. We

choose to reason about operations but not values because we aim to provide a common framework to check a variety

of semantics, many of which (e.g., regularity and safety) were introduced after Misra’s paper. It is not immediately

clear to us how to extend Misra’s algorithm to check, say, regularity, because for regularity, a replaced value is

allowed to re-appear.

3. Two Level Auditing Architecture to Maintain Consistent In Cloud:

 Confidential data in an enterprise may be illegally accessed through a remote interface facilitated by a

multiple cloud, or relevant data and archives may be lost or tampered, in the condition of outside storage .So that it

is necessary for CSPs to provide security techniques for managing their storage services. To overcome these

problems this system presents a Consistency as a service auditing cloud scheme. This system proves the security of

my scheme based data fragmentation on multiple clouds. The proposed system has data security, data fragmentation

and storage on multiple cloud services. Therefore, a trusted third party is used to store the data on multiple cloud and

find the data access by un-trusted cloud service providers. The system proposes, client data divided into various

multiple pieces and send to the multiple clouds with help of trusted or believable third party. If any of the un-trusted

cloud service providers try modify the data the alert will send to trusted third party about illegal access of un-trusted

cloud service provider.

4. What consistency does your key-value store actually provide?:

 In this proposed system, where they record lengthy traces with interleaved operations, and after the fact

they check for cycles in several conflict graphs to find whether various properties hold. The properties they analyze

are those that are important in parallel hardware design, such as safe registers or regular, rather than the properties

usual in cloud storage platforms such as eventual consistency with monotonic reads. There is also work on formally

defining weak consistency properties. Usually eventual consistency is described in terms of internal properties such

as the state of the replicas.

5. Analyzing Consistency Properties for Fun and Profit:

 Motivated by the increasing reputation of eventually consistent key-value stores as a commercial service.

This system address two important problems related to the consistency properties in a history of operations on a

write/read register (i.e., finish time, start time, argument, and response of every operation). First, this system

considers how to detect a consistency violation as soon as one happens. This system proposed a specification for

online verification algorithms, and this system presents such algorithms for several well-known consistency

properties. Second, this system considers how to quantify the severity of the violations, if a history is found to

contain consistency violations. This system investigates two quantities: first is the staleness of the reads, and the

second is the commonality of violations. For staleness, this system further considers time-based staleness and

operations-count-based staleness. These system present efficient algorithms that compute these quantities. This

system believes that addressing these problems helps both key-value store providers and users adopt data

consistency as an important aspect of key-value store offering.

6. Timestamps in Message-Passing Systems That Preserve the Partial Ordering:

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3675

Time stamping is a common method of totally ordering events in concurrent programs. However, for applications

requiring access to the global state, a total ordering is inappropriate. This paper presents algorithms for times

tamping events in both asynchronous and synchronous message passing programs that allow for access to the partial

ordering inherent in a parallel system.

7. Distributed Systems: Principles and Paradigms:

 A cloud is essentially a large-scale distributed system where each piece of data is replicated on multiple

geographically distributed servers to achieve high performance and high availability. Thus, we first review the

consistency models in distributed systems. Ref. [5], as a standard book, proposed two classes of consistency models:

one is data-centric consistency and the other is client-centric consistency. Data-centric consistency model considers

the internal state of a storage system, i.e., how updates goes through the system and what guarantees the system can

furnish with respect to updates. However, to a customer, it really does not matter whether or not a storage system

internally include any stale copies. As long as no stale data is observed from the client’s point of view, the customer

is satisfied. Therefore, client-centric consistency model concentrates on what specific customers want, i.e., how the

customers inspect data updates. Their work also describes different levels of consistency in distributed systems,

from strict consistency to weak consistency. High consistency implies reduced availability and high cost. Ref. [6]

states that strict consistency is never needed in practice, and is even considered harmful.

3.PROPOSED SYSTEM

 We show a novel consistency as a service (CaaS) model[1] , where a group of users that constitute an audit

cloud can verify whether the data cloud provides the promised level of consistency or not. The Consistency as a

service model consists of large data cloud and various audit cloud .A service level agreement (SLA) will be busy

between the data cloud and the audit cloud ,which will tell what level of consistency the data cloud must provide,

and how much will be charged if the data cloud violates the service level agreement .

Figure -2: Proposed model

global auditing concentrate on Causal consistency.

Causal consistency: - Writes that are causally related should be seen by all processes in the similar order. Concurrent

writes may be seen in a dissimilar order on different machines.

 Global auditing concentrate on casual consistency, which is performed by constructing a directed graph. If

the constructed graph is a directed acyclic graph then casual consistency is preserved. Specify the severity of

violations can be done by two metrics for the CaaS model: commonality of violations and staleness of the value of

read. Finally it was proposed a heuristic auditing strategy (HAS) which adds appropriate reads to reveal as several

violations as possible.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3676

4. MATHEMATICAL MODEL
System Description:

User Authentication

Set (C) = {c0, c1, c2, c3}

C0= Get User Id

C1=Get Cloud Id.

C2=Get Data Owner Info

C3=get the User Privilege Information

C4= Get key from hash table.

Encryption

Set (E) = {e0, e1, e2, c1, c2}

e0=get file to be encrypted

e1=get public key for encryption

e2=encryption of data.

Consistency check

Set (D) = {d0, d1, d2}

d0= check global status

d1= maintain consistency status

d2= check out

Service module

Set (S) = {s0, s1, s2, d0, d1}

s0=get user id and file request

s1=get data to be uploaded or downloaded

s2=provide service

Union and Intersection of project

Set (E) = {e0, e1, e2, c1, c2}

Set (D) = {d0, d1, d2}

Set (S) = {s0, s1, s2, d0, d1}

(C U E)= {c0,c1,c2, c3,c4, e0, e1, e2}

(C ∩ E)= {c1, c2}

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3677

(D U S)= {d0, d1, d2, s0, s1, s2}

(D ∩ S) = {d0, d1}

Figure -3 : C intersection E

Figure -4: D intersection S

5. RESULT
System results are as follows:

Figure -5: Registration

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3678

Figure -6: User Activation

Figure- 7: Token generation

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3679

Figure -8: Admin login

Figure -9: User login

Figure- 10 : File Updating

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3680

Figure -11 : File Uploading

6. RESULT ANALYSIS

 If the user u1 is updating the file and the user u2 is requesting download or update request for same file, the

access should be denied as the consistency is not maintained if access is provided.

Chart -1: Result analysis

7. CONCLUSION

 Consistency as a service (CaaS) model and a global auditing structure to help users validate whether the

cloud service provider (CSP) is providing the promised consistency and to quantify the severity of the violations is

any . With the CaaS model, the users can assess the quality of cloud services and select a right cloud service

provider among various candidates, for example the least expensive one that still provides adequate consistency for

the users’ application.

8. REFERENCES

[1] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen, “Don't settle for eventual: scalable causal

consistency for wide-area storage with COPS,” in Proc. 2011 ACM SOSP.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5741 www.ijariie.com 3681

[2] J.Misra. Axioms for memory access in asynchronous hardware systems. ACM Transactions on

Programming Languages and Systems, 8(1):142–153, January 1986.

[3] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, “What consistency does your key-value store actually

provide,” in Proc. 2010 USENIX HotDep.

[4] W. Golab, X. Li, and M. Shah, “Analyzing consistency properties for fun and profit,” in Proc. 2011 ACM

PODC.

[5] A. Tanenbaum and M. Van Steen, Distributed Systems: Principles and Paradigms. Prentice Hall PTR,

2002.

[6] W. Vogels, “Data access patterns in the Amazon.com technology platform,” in Proc. 2007 VLDB.

[7] M. Armbrust, A. Fox, R. Gri-th, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, et al. , "A view of cloud computing," Commun. ACM , vol. 53, no. 4, 2010.

[8] C. Fidge, "Timestamps in message-passing systems that preserve the partial ordering," in Pro c. 1988

ACSC .

[9] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, "Consistency rationing in the cloud: pay only when

it matters," in Pro c. 2009 VLDB

[10] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, "Data consistency properties and the tradeoffs in

commercial cloud storages: the consumers' perspective," in Pro c. 2011 CIDR.

