Improvement of energy efficiency and reduction of data loss using clustering in WSN: A Survey Snehalkumar Trapsiya¹, Mr. Indr Jeet Rajput² ¹ Student, Computer Engineering, HGCE(GTU), Gujarat, India ² Asst. Prof., Computer Engineering, HGCE(GTU), Gujarat, India ## **ABSTRACT** WSN consist of sensor nodes of small size & having limited computational power & limited energy. Due to lower energy, sometimes it may happen that the data sensed by the nodes couldn't reach to the sink node and data loss occurs which is also a big problem. An algorithm named FNR provides around 90% of data loss recovery with the increase in energy which uses combination of Grade diffusion algorithm and Genetic Algorithm. In WSN, clustering approach is very important for the increase of lifetime and reduction of dataloss means decreasing energy consumption and decreasing data loss. Another algorithm, DFCA provides clustering, which is more important than other clustering techniques. By applying the DFCA in the FNR algorithm before applying the GA after the Grade diffusion process is done we can have more energy efficient and more data reliable algorithm, which helps us in many approaches for the betterment of WSN and its lifetime and data loss problem. **Keyword:** - FNR, DFCA, GA ### 1.Introduction A WSN is a type of wireless network consists of sensor nodes which generally sense the physical conditions, processing it and then sends it to the base station or say the place or node from where the network is connecting to the outside world. Wireless Sensor Networks (WSN) are consisting spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure etc. and to cooperatively pass their data through the network to the base station . A Wireless Sensor Network is designed to detect events of interest of an application, collect data related to these events and report these data to a monitoring station (Base Station). Wireless Sensors are small in size having limited energy & computational power. The Wireless sensors are standard measurement tools; consist of transmitters to convert signals from process control instrument into a radio transmission. The radio signal is interpreted by a receiver which then converts the wireless signal to a specific, desired output, such as an analog current or data analysis via computer software. The WSNs are of two types. [5] - 1) Flat Network. - 2) Cluster Based Wireless Sensor Network. Fig 1 Wireless Sensor Network [1] # 2. Background and Existing System In WSN, fault occurrence probability is very high compare to traditional networking. On the other hand networks maintenance and nodes replacement is impossible due to remote deployment. These features motivate researchers to make automatic fault management techniques in wireless sensor networks. As a result many fault detection and fault tolerance techniques proposed. Fault Node Recovery (FNR) algorithm is one of the fault tolerance technique. Use of FNR algorithm can results in fewer replacements of sensor nodes and more reused routing paths. And thus algorithm not only enhances WSN lifetime but also reduces the cost of replacing the sensor nodes. The FNR is based on the GD algorithm, with the goal of replacing fewer sensor nodes that are inoperative or have depleted batteries, and of reusing the maximum number of routing paths. In the FNR first the GD algorithm is applied and after that the GA is applied and thus the faulty nodes are replaced with the other ones so that the lifetime can be increased. Using the GD algorithm first, Grade Value, routing table, set of neighbor nodes, payload values for each sensor nodes etc are decided. After that the Genetic algorithm is applied and the faulty nodes are found and then they are replaced with the other healthy nodes by using the following steps. - (1) Initialization, - (2) Evaluation, - (3) Selection, - (4) Crossover, - (5) Mutation. In the FNR, after applying the GD algorithm, the sensor nodes are detected using the sensor node detection event and after that the replacement process occurs as per the steps given above. These steps are described below. ## (1) Initialization: In the initialization step the GA generates the Chromosomes according to the affected or the nodes which are to be replaced and its genes. The chromosome is the expected solution of the replaced nodes. . The Fig 2 shows the Chromosome and its genes. | 9 | 7 | 10 | 81 | 23 | 57 | 34 | 46 | 66 | 70 | |---|---|----|----|----|----|----|----|----|----| | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | Fig 2 Chromosome and Genes [1] ## (2) Evaluation In this step, fitness value is calculated with the fitness function. But we can't put genes directly into the fitness function in the in the FNR algorithm. Because the genes mean weather the node should be replaced or not. The fitness function is shown (1) $$f_n = \sum_{i=1}^{\max(\text{Grade})} \frac{P_i \times \text{TP}^{-1}}{N_i \times \text{TN}^{-1}} \times i^{-1}$$...(1) Ni = the number of replaced sensor nodes and their grade value at i Pi = the number of re-usable routing paths from sensor nodes with their grade value at i. TN = total number of sensor nodes in the original WSN. TP = total number of routing paths in the original WSN. Here as WSN is looking for the most available routing path and the least number of replaced sensor nodes high fitness value is sought. #### (3) Selection: The selection step will eliminate the chromosomes with the lowest fitness values and retain the rest. Here elitism strategy is used using which keep the half of the chromosomes with better fitness values and put them in the mating pool. #### (4) Crossover: The step is used in the genetic algorithm to change the individual chromosome. One point cross over strategy is used here. Fig 3 Crossover Step [1] # (5) Mutation: The mutation step can introduce traits not found in the original individuals and prevents the GA from converging too fast Fig 4 Mutation Step [1] Here in the FNR, after the Mutation step we find the recovered nodes using which the data loss is being decreased and energy level is increased. But here the data transmission takes place in either single hop or multi hop way. But if we apply clustering in the FNR algorithm we can make the algorithm more energy efficient and we can use the advantage of both clustering and Fault node recovery for the betterment of WSN. For that DFCA algorithm is used as a base of FNR algorithm means first we apply DFCA and provides clustering and after that FNR is applied on the WSN. Why Clustering? WSN can be of Flat base and Cluster base. Flat base is that one in which the sensor nodes send the sensed data using single hop or multi hop transmission. And the sensor nodes have limited energy and irreplaceable power sources so they can't send the data after the exhaust of the energy. Clustering is that technique in which the sensors nodes are divided into sub areas and a node is selected as a Cluster Head (CH), and other nodes of the same cluster sends the sensed data to the CH and the CH sends it to the either Base station(BS) or the other CH. Even any node of the routing path affected or becomes faulty the data being send will not reach to the BS. Instead of that, if we apply clustering than if one of the nodes found faulty, the neighbor of that node will take place of that node and sends the data to the BS. Thus the problem of faulty node can be replaced and also we can improve the energy level and lifetime of WSN. In ^[2] Fault Tolerant and Mobility aware Routing protocol for mobile WSN is explained. Also the fault tolerance and less packet loss is achieved while sending data either from cluster members to cluster head or low level cluster head to higher level cluster head. Delay also gets reduced as the cluster head sends the data to Base Station through level based architecture of nodes. In ^[3] protocol for Energy efficient and energy balanced fault tolerance clustering in WSN is provided. Here also importance of clustering in the WSN is explained. And also Energy model and network model are explained. The cluster formation is based on residual energy and routing overhead with distance between sensor nodes and CH. Fault tolerant algorithm always selects new CH using either cost or payoff functions. Fault tolerant algorithm only considers a permanent failure of sensor nodes and gateway. In ^[4] Energy efficient chain based cooperative routing protocol for WSN explained. In this cluster based WSN CHs are used to receive the data from the nodes which relies under that particular CH. And to transmit the data from the last CH to the BS, it sends the data to the Cluster Coordinates (CCO) assigned to it. These CCOs are that nodes which transmit the data sent through their former CH or CCO assigned as shown in Fig 5. Balanced energy consumption is achieved by transmission of data to the intermediate nodes at all the levels. Another remarkable property is that, number of nodes can be increased without any additional cost, as all the nodes can still send data with the help of relay nodes within cluster and cluster coordinators. In ^[5] information for fault tolerance in dynamic cluster based WSN is provided. Also in this paper the behavior of the WSN network for both flat and dynamic cluster based and also provides the information of multiple nodes leaving the dynamic cluster based WSN. Dynamic Cluster Based WSN is a robust network to handle new nodes joining and existing nodes leaving. Here two algorithms are proposed, one for one-hop neighbor information and one for partial one-hop neighbor information. Fig 5 Inter-cluster communication with the help of Cluster coordinators [4]. In ^[6] comparative study on different LEACH protocols is provided. It also explains the classification of routing protocols for WSNs. And the main purpose of designing energy efficient routing protocol is to efficiently use the energy of the network so that the network lifetime get increased. ## 2.1 FNR algorithm Here the Fig 6 explains the FNR algorithm flow chart and the basic steps involved in it. Fig 6 Fault Node Recovery Flow Chart. [1] # 2.1 Distributed Fault-Tolerant Clustering Algorithm. DFCA is a distributed fault-tolerant clustering algorithm that addresses both issues, cluster formation based on remaining energy of the gateways and fault tolerance of the WSNs owing to death of some gateways. In DFCA, the nodes select proper Cluster Head by considering a cost function which consists of residual energy of the CH, The distance between sensor nodes to the CH and distance from the CH to the base station. In cluster formation, DFCA takes care about the sensor nodes that have no CH within their communication range. It also presents a distributed run time recovery of the faulty cluster members due to sudden failure of the CH. It avoids redundant deployment of the CHs or fully re-clustering approach to recover the faulty nodes to tolerate the failure. [6] The leach algorithm has the time complexity of O (mn2), very high for a large scale WSN. Then the DFCA algorithm proposed with the time complexity O (n long) time, which is an improvement over. Thus in the DFCA following terminologies are used: [6] - 1. A set of sensor nodes denoted by $S=\{S_1, S_2, ..., S_n\}$ - 2. A set of gateways denoted by $G = \{G_1, G_2, \dots, G_m\}$ - 3. $Dist(S_i, S_j)$ denotes the distance between two nodes S_i and S_j . - 4. $E_{residual}$ (S_i) denotes the remaining energy of S_i . - 5. ComRangeCH(S_i) is the set of all those gateways, which are within the communication range (R_S) of node S_i . Therefore, $$ComRangeCH(S_i) = \{G_j | Dist(S_i, G_j) \le R_S \land G_j \in G\}_{...(2)}$$ For example, $ComRangeCH(Si) = \{G2, G3, G5, G7\}$ means sensor node Si can be assigned to any one of the gateways G2, G3, G5 or G7. 6. Neighbour (Si) is the set of all those sensor nodes, which are within the communication range of node Si. Neighbor (Si) = $$\{Sj|Dist(Si, Sj) \le Rs \land Sj \in \{S-Si\}\}$$ Depending on the communication range and connectivity between the sensor nodes and gateways, also in DFCA few kinds of nodes are defined in the system as follows: **Covered Node and Covered Set**: Covered nodes are having at least one Gateway within its communication range. And covered set is set of all covered nodes.[6] Uncovered Node and Uncovered Set: Uncovered sensor has no gateway within its communication range. And uncovered set is collection of all uncovered nodes in WSN. **Backup nodes and backup set**: Backup nodes for an uncovered sensor node Si are all the covered sensor nodes which are within communication range of Si. Backup set of an uncovered sensor node Si is the set of all backup nodes of Si. We refer this set as BackupSet (Si).[6] **Alive and Inactive Sensor node**: Alive sensor nodes are those sensor nodes, which have some residual energy and can send the sensed data to the CH directly or indirectly. Here in this thesis we apply clustering to the FNR by providing DFCA to the FNR before finding grades and by doing that we are having the advantage of both clustering and Fault node recovery algorithms. # 3. Comparisons of Implemented Table 1 Comparison of Implemented Techniques | Sr. No | Title | Method Used | Advantages | Dis-advantages | |--------|--------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | | | | STATE OF THE | | | 1 | Fault Node Recovery | Combination of | Reuses most routing | Clustering | | | Algorithm for a Wireless | Grade Diffusion | path, provides more | topology is not | | | Sensor Network [1] | algorithm and | energy efficiency. | used. | | | | Genetic algorithm | | | | | | | | | | 2 | Fault Tolerant and Mobility | Location | Fault tolerance & | Mobility of cluster | |---|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Aware Routing Protocol for | aware(Mobility) less packet loss is | | head is not | | | Mobile Wireless Sensor | aware routing | achieved. | provided for | | | Network [2] | algorithm is used | | heterogeneous | | | | | | network. | | 2 | E2DET. Engage Efficient | CAD andiad and | D | Engage halamand | | 3 | E3BFT: Energy Efficient | | Provides fault | Energy balanced | | | and Energy Balanced Fault | then clustering | tolerance and | fault tolerance is | | | Tolerance Clustering in | technique is applied. | energy efficiency. | not provided here. | | | Wireless Sensor Networks. | A CONTRACTOR OF THE PARTY TH | | | | | [3] | | | Direction of the Control Cont | | 4 | Energy efficient chain | Chain Base Cluster | Provides more | Feasibility not | | | based cooperative routing | Cooperative | energy efficiency. | provided. | | | protocol for WSN [4] | Protocol. | | 100 | | | AT A | | | 1/1/2 | | 5 | Reliability Enhancement in | Cache method. | Packet loss ratio | 5% time delay | | | WSN Using Loss | | decreases and | increases. | | | Recovery Model [5] | | packet delivery ratio | | | | All I | | increases. | 1111 | | | E 1 T 1 . D . | 0 1 1 1 | E 66 | 7 | | 6 | Fault Tolerance in Dynamic | One hop and partial | Energy efficient | Less | | | Cluster-Based Wireless | one hop technique. | routing is provided | security,QoS, | | | Sensor Networks [6] | | for WSN having | Load balancing | | | 14/4 | | mobile nodes. | etc. are not | | | | | | included. | | | | | | and the second | | | | 8 | 200 | A STATE OF THE STA | | 7 | A Distributed Fault-tolerant | Distributed Fault | Uses clustering | Data loss is not | | | Clustering Algorithm for | Tolerant by | technique for the | recovered. | | | Wireless Sensor Networks | applying Clustering | provision of energy | | | | [7] | | efficiency and fault | | | | | | recovery. | | | | | | | | | | | | | | | 8 | A Comparative Study on | Distributed Fault | For some amount it | Some other | |----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Advances in LEACH | Tolerant by | is energy efficient. | protocol | | | Routing Protocol for | applying Clustering | | provides more | | | Wireless Sensor Networks: | | | efficient, | | | A survey [8] | | | scalable | | | | | | and robust | | | | | | clustering | | | | | | scheme then | | | | a delication of the same th | and the same of th | LEACH. | | 0 | An Engage ECC Lond | Centralized | T | As BS has to | | 9 | An Energy Efficient | | It ensures | Dina. | | | Uneven Grid Clustering | approach and uses | that the | send messages | | | based | fixed clustering. | transmission | to each CH in | | | Routing Protocol for | | distance for any | each round it | | | Wireless Sensor | | communication in | causes extra | | | Networks[12] | | the | traffic overload | | | | | network is less than | in network. | | | W/ A | | the threshold | | | | A1 - | | distance of the | 111 | | | All l | 1 | energy | | | | | | consumption model. | 3 | | | V | | And improves | | | | V/// | 400 | energy. | 1/3 | | 10 | Improving Energy | Mobile sink is used | Provides minimum | Applicable for | | | Efficiency in Wireless | | delay and uses | small network | | | Sensor | | rechargeable battery | only. | | | Network Using Mobile | | so no big issue with | and the same of th | | | Sink[9] | | the energy concerns. | ۶ | | | Sum() | E THE PARTY | and energy concerns. | | | | | | State of the | | | | | | | | | | | | | | | | | 1 | | | | 11 | Energy and Delay | Uses Clustering | Provides energy | Here CH only | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|------------------| | | Minimization in | analytical and | efficient network | communicate its | | | Cluster-Based Wireless | stimulations. | and with that also | immediate | | | Sensor Networks[11] | | provides QoS for | neighbours. | | | | | certain level. | | | | | | | | | | | | | | | 12 | Efficient Data Aggregation | Data aggregation | Accounts for less | Useful for short | | | Methodology for Wireless | methodology | energy | networks only. | | | Sensor Network [10] | de la companya | consumption for the | | | | AND THE PERSON NAMED IN COLUMN TO NAM | | system. | State . | | | | | | | | | | | | | | | AY A | 9 | | | ## 4. CONCLUSIONS Use of FNR algorithm provides us reduction in data loss, number of sensor nodes enhanced and also provides us the energy efficiency but it does not use the clustering topology, if we apply clustering then we can make that network more energy efficient. The DFCA algorithm provides us the more energy efficiency in the WSN. So, for development of more energy efficient network with low data loss we apply DFCA before the GD phase in FNR. So, we can improve the energy efficiency & also can improve the fault tolerance by which we can easily improve the use of sensors nodes and the lifetime of sensor network, the lifetime of sensor network. # 5. REFERENCES - [1] Hong-Chi Shih, Jiun-HueiHo, Bin-Yih Liao, Jeng-Shyang Pan, "Fault Node Recovery Algorithm for a Wireless Sensor Network,", IEEE SENSORS JOURNAL, VOL. 13, NO. 7, ISSN 1530-437/X/13, pp. 2683-2689, JULY 2013. - [2] JaideepLakhotia, Rajeev Kumar, "Fault Tolerant and Mobility Aware Routing Protocol for Mobile Wireless Sensor Network," International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), ISSN978-1-4799-4190-2/14 pp: 584-590, 2014. - [3] Suneet K. Gupta, PratyayKuila, Prasanta K. Jana, "E3BFT: Energy Efficient and Energy Balanced Fault Tolerance Clustering in Wireless Sensor Networks," IEEE, ISSN 978-1-4799-6629-5/14 pp: 714-719, 2014. - [4] Shalli Rani, JyoteeshMalhotra, Rajneesh Talwar, "Energy efficient chain based, cooperative routing protocol for WSN", Elsevier, Applied Soft Computing 7, ISSN 1568-4946/15, pp. 113–126, June, 2015. - [5] ShilpaKatikar, DrVivekDeshpande, "Reliability Enhancement in WSN Using Loss Recovery Model", International Conference on Information Processing-ICIP, pp: 554-558, Dec-2015. - [6] Asim Zeb, A.K.M.Muzahidul Islam, Nafees Mansoor, SabariahBaharun, Shozo Komaki, "Fault Tolerance in Dynamic Cluster-Based Wireless Sensor Networks,", IEEE, ISSN 978-1-4799-63690/15,pp:646-649, 2015. - [7] MdAzharuddin, PratyayKuila, Prasanta K. Jana,"A Distributed Fault-tolerant Clustering Algorithm for Wireless Sensor Networks", ICACCI, ISSN 978-1-4673-6217-7/13 pp. 997-1 002,2013. - [8] AlakeshBraman, Umapathi G. R.," A Comparative Study on Advances in LEACH Routing Protocol for Wireless Sensor Networks: A survey,",International Journal of Advanced Research In Computer and Communication Engineering Vol. 3, Issue 2, ISSN (Print): 2319-5940/14, pp:5683-5690, February 2014. - [9] K. Deepak Samuel, S. Murali Krishnan, K. Yashwant Reddy, and K. Suganthi.," Improving Energy Efficiency in Wireless Sensor Network Using Mobile Sink,", Springer-Verlag Berlin Heidelberg 2011. - [10] Mr.Kamlesh A. Waghmare, P.N.Chatur, S.S.Mathurkar, "Efficient Data Aggregation Methodology for Wireless Sensor Network,", IEEE, ISSN 978-1-4673-9338-6, 2016. - [11] Min Yao, Chuang Lin, Yuan Tian," Energy and Delay Minimization in Cluster-Based Wireless Sensor Networks,",IEEE, ISSN978-0-7695-4865-4, 2012. - [12] BhaskarPrince, Prabhat Kumar, M. P. Singh and JyotiPrakash Singh," An Energy Efficient Uneven Grid Clustering based Routing Protocol for Wireless Sensor Networks, "IEEE, ISSN 978-1-4673-9338-6, 2016.