Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

Key generator using neuronal network and
symmetric text ciphering in the mobile system
communication

Tianandrasana Romeo Rajaonarison’, Paul Auguste Randriamitantsoa®

! Doctoral School in Sciences and Technology of Engineering and Innovation, Research Laboratory
Telecommunication, Automatic, Signal and Images, University of Antananarivo, BP 1500,
Antananarivol01 — Madagascar

2 Doctoral School in Sciences and Technology of Engineering and Innovation, Research Laboratory
Telecommunication, Automatic, Signal and Images, University of Antananarivo, BP 1500,
Antananarivol101 - Madagascar

ABSTRACT
The mobile communication system uses ciphering techniques to protect the data. On symmetric encryption, the keys
on the emitter and receiver are the same. The neural network could be used for generating the key.. In this article,
we use text and it will be ciphered with symmetric encryption like : Serpent, Advanced Encryption Standard (AES).
After simulation, the 128 bit key generated will be analyzed using similarities between them. The selection of type of
cyphering text algorithm is important. The receiver could not decipher with the Serpent algorithm if the emitter
ciphers it with AES and vise-versa.

Keyword : - Serpent, AES, neuronal, ciphering, text

1. INTRODUCTION

The mobile system communication uses secret key encryption. So, the encryption key can be calculated from the
decryption key or vice versa. The fig 1 explains the method of symmetric key encryption

- In general, they are equal: K = K’. This is symmetric encryption.

- Generally, only one algorithm is used for encryption and decryption: D = E

- The secret key is secretly shared between sender A represented by Alice and receiver B represented by Bob.

M

s Plaintext

encryption key

Plaintext

Fig -1: Symmetric key encryption

16654 www.ijariie.com 822

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

2. SECURING TEXT USING COMBINED NEURONAL CRYPTOGRAPHY

2.1 princip of ciphering

The neural key exchange algorithm is a synchronization application. Both partners A and B use a TPM machine
(Tree Parity Machine) with the same structure. The parameters K (number of hidden layer units), L (the range of
synaptic weight values made by the two machines A and B) and N (the input layer units for each hidden layer unit)

are public .

Each TPM machine is initialized with randomly selected weights that must be kept secret. During the
synchronization process, only the input vectors and the output vectors are transmitted on the public channel.
Therefore, each user just knows the internal representation of their own TPM, which opens a new vision in the world
of contemporary cryptography. Keeping information secret is essential for the security of the key exchange protocol.
After the synchronization is complete, A and B use the modified weights as a common secret key which is thus used

for AES encryption.

The main problem of attacker E is that it completely ignores the internal representation of A and the TPM of B.
While the movement of the weights depends only on oi, it is thus difficult for an attack to correctly guess the state of

the hidden units.

k4

' Y

Fig -2: Attack of the secret key by E

2.2 Neural cryptography

The Diffie-Hellman key exchange protocol was introduced by Whitfield Diffie and Martin Hellman in 1976, to
solve the problem of exchanging keys over an insecure channel in symmetric encryption. However, the Diffie-
Hellman key exchange is vulnerable to a man-in-the-middle attack. In this attack, an adversary E intercepts Alice's

public key and sends his own public key to Bob.

When Bob transmits his public key, Eve replaces it with her own key and sends it to Alice. Eve and Alice thus agree

on a shared key and Eve and Bob agree on another shared key. After this exchange, Eve simply decrypts any

16654 www.ijariie.com 823

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

messages sent by Alice or Bob, then reads and, optionally, modifies them before re-encrypting with the appropriate
key and transmitting them to the other party.

To remedy the problem posed above, we will build two neural networks, one for each user. Then they have to
synchronize their networks, and the weights will be the secret keys of the TPM. The type of network chosen here is
the forward-flow multilayer perceptron and the learning is in supervised mode. Here is a simple neural network
developed by Rosenblatt in 1968

Fig -3: Gradient backpropagation perceptron mode
This model is a multi-layer forward-flow network (see Figure 3).
Supervised learning in this case consists of measuring the error between the inputs and the outputs and then

propagating the error to the neurons of the hidden layers and those of the inputs.

It consists of an input vector X, a hidden layer Sigma o, a weight coefficient W between the input vector and the
hidden layer, and an activation procedure which counts the result value 1. Let's call such a neural network a neural
machine. It can be described by three parameters: K: the number of hidden neurons, N: the number of input neurons
connected to each hidden neuron, and L: the maximum value for a weight {-L,..+L}. Two partners have the same

neural machines.

To count the output value, we use a simple method:

rT= ch:lSIGN[Ef:l ‘-“’ri,_;l'xi,_;l'] (1)

A question arises, how can we update the weights? We update the weights when the output values of the neural

machines are equal.

16654 www.ijariie.com 824

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

There are three different rules:
Table -1: learning rules

wi; = glwi; + x,,;76(7475)) Hebb’s learning rule
W;f = g(w;; — x;; 18 D 6(r115)) Anti- Hebb’s learning rule
wi; = g(w;; + x;; g0 6(22 %)) Random-walk’s learing rule

Here, 0 is a special function. 6 verified :
(a, b) =0 ifa<>b; others 6 = 1.

The g function keep the weight in the gamma -L ... + L. x is the input vector et w is the ponderation vector. After
the machines are synchronized, their weights are equal: we can use them to build a shared key that will be
impossible to hack due to the existence of chaotic synchronization.

2.3 Syncrhonization algorithm

.We will follow the following steps for neural key generation which is based on neural networks:

1. First determine the neural network parameters namely: k, N and L

2. Random initialization of neural network weights A and B.

3. Repeat 4 to 7 until synchronization occurs.

4. Calculated the inputs of the hidden layers.

5. The output bit is generated and exchanged between the two machines A and B.

6. If the output vectors of the two machines are equal i.e. TA = 7B then the corresponding weights are
modified using the learning rule of Hebb and Anti-Hebbian.

7. Once synchronization is complete, the synaptic weights are the same for both networks so these

weights are used as the secret key.

This key is subsequently used to encrypt a text to be transmitted over an unsecured channel using the AES

encryption algorithm with a key size of 128 bits, 192 bits and 256 bits.

16654 www.ijariie.com 825

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

Begin o Put the parameters i, N, L

F 3
o
1]

LE.

e

Initialization Randomize imnput Initialization
vector

3

.
L

h h 4

Receive input vector . .
np mput vector Eeceive input vector
¥ >
- . J
Cutput vector caleulation NO .
Output vector calculation

*(equal output? >+

YES

weight update according to
learning rule

l l

Machine A Public channel Machine B

Fig -4: Neural Key Exchange Algorithm
2.4 Serpent algorithm
The Serpent key schedule consists of 3 main stages. In the first stage the key in initialized by adding padding if

necessary. This is done in order to make short keys map to long keys of 256-bits, one "1" bit is appended to the end
of the short key followed by "0" bits until the short key is mapped to a long key length.

16654 www.ijariie.com 826

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

In the next phase, the "prekeys" are derived using the previously initialized key. 32-bit key parts or XORed,
the FRAC which is the fraction of the Golden ratio and the round index is XORed with the key parts, the result of
the XOR operation is rotated to left by 11. The FRAC and round index were added to achieve an even distribution of

the keys bits during the rounds.

Finally the "subkeys" are derived from the previously generated “prekeys”. This results in a total of 33 128-bit
"subkeys"

At the end the round key or "subkey" are placed in the "initial permutation IP" to place the key bits in the correct

column.

@\ 217)) @ 5@ Fracti 37 t f the 1 de NE
9e3779b9 // fractional part of the golden ratio

~

uint32 t words([132]; // w
uint32 t subkey[33][4] // sk

/* key schedule: get prekeys */
void w(uint32 t *w) {
forglshort i =8; 1 < 140; i++) {
w[i] = ROTL((w[i - 8] ~ w[i - 5] "~ w[i - 3] ~ w[i - 1] ©~ FRAC ©~ (i - 8)), 11);
}
}

/* key schedule: get subkeys */
void k(uint32 t *w, uint32 t (*sk) [4]) {

uint8 t i, p, J, s, k;
for (i = 0; 1 < 33; i++) {

p = (32 + 3 - 1) % 32;
for (k = 0; k < 32; kt++) {

s = S[p % 81[((w[4 * 1 + 0] >> k) & 0x1) << O
((w[4 * 1 + 11 >> k) & Oxl) << 1
((w[4 * 1 + 2] >> k) & Oxl) << 2 |
((w[4 * 1 + 3] >> k) & Ox1) << 3 1;
for (3 = 0; J < 4; J++) |
sk[11[3] = ((s >> J) & O0x1) << k;

}

2.4.1 S-Boxes
The Serpent s-boxes are 4-bit permutations, and subject to the following properties:

- al-bitinput difference will never lead to a 1-bit output difference, a differential characteristic has a

probability of 1:4 or less

- linear characteristics have a probability between 1:2 and 1:4, linear relationship between input and output

bits has a probability between 1:2 and 1:8.

- the nonlinear order of the output bits as function of the input bits is 3. However there have been output bits

found which in function of the input bits have an order of only 2.

16654 www.ijariie.com 827

https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Permutation

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

The Serpent s-boxes have been constructed based on the 32 rows of the DES s-boxes. These were transformed
by swapping entries, resulting arrays with desired properties were stored as the Serpent s-boxes. This process was
repeated until a total of 8 s-boxes were found.

2.4.2 Initial permutation (IP)

The initial permutation works on 128 bits at a time moving bits around.

foriin0..127

swap(bit(i), bit((32 * i) % 127))

2.4.3 Final permutation (FP)
The final permutation works on 128 bits at a time moving bits around.

foriin0.. 127

swap(bit(i), bit((2 * i) % 127))

2.4.3 Linear transformation (L T)
Consists of XOR, S-Box, bit shift left and bit rotate left operations. These operations are performed on 4 32-bit

words.

for (shorti=0;i<4;i++) {

}

X[0] = ROTL(X[0], 13);

X[2] = ROTL(X[2], 3):

X[1] = X[1] ~ X[0] ~ X[2];

X[3] = X[3] ~ X[2] ~ (X[0] << 3);

X[1] = ROTL(X[1], 1);

X[3] = ROTL(X[3], 7)

X[0] = X[0] ~ X[1] ~ X[3];

X[2] = X[2] ~ X[3] ~ (X[1] << 7);

X[0] ROTL(X[0], 5);

X[2] = ROTL(X[2], 22);:

for (short 1 = 0; i < 4; i++) {
Bli + 1] = X[i];

—

16654 www.ijariie.com 828

https://en.wikipedia.org/wiki/Data_Encryption_Standard

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

Alﬂ Bl*l C

1+1 j*1

Fig -5: Serpent visualization
The fig 5 resume all process for having ciphering text with Serpent algorithm.

2.5 AES

The Rijndael scheme is a block cipher and divides the incoming plaintext into a block with four rows and four

columns. A block has a total of 16 bytes, so each box contains one byte.

Each block goes through several rounds of four steps during ciphering or deciphering. Depending on the key
length, there are ten rounds for AES-128, twelve rounds for AES-192 and a total of 14 rounds for AES-256.

16654 www.ijariie.com 829

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

The four steps are repeated in each round.

The symmetrical encryption procedure with AES in four steps

e Step 1 — SubKeys: Here, Rijndael uses an S-box. This indicates with which value the algorithm replaces
which byte in the blocks. The S-Box is derived from the AES key.

e Step 2 — ShiftRow: Now Rijndael shifts the bytes in the blocks line by line by a certain number of columns
to the left.

e Step 3 - MixColumn: At this point, the AES algorithm mixes the bytes using a mathematical procedure
called a linear transformation.

e Step 4 — AddRoundKey: AES finally links the current round key with the values of the blocks.

Encryption with the Advanced Encryption Standard goes through these four steps as often as the key length dictates.
The result is the so-called ciphertext, which no longer reveals anything of the content of the message or information
to the naked eye. During decryption, Rijndael goes through all the steps over all the rounds in reverse order. This
is how the plaintext is created from the ciphertext.

x Nr-1

PLAINTEXT A PLAINTEXT
| .
AddRoundKey 9 AddRoundKey
< = E I
) £ | InvSubBytes
SubBytes
g e
3 InvShiftRows
(4 ShiftRows - ',
z : S Z . .
8 MixColumns o) :
3 x T E) AddRoundKey
& i | AddRoundKey & I8 :
O O € | InvMixColumns
g i
f & | InvSubBytes
Q SubBytes 5 ¥
3 ! 8 | InvshiftRows
2| shiftRows _
g 7
AddRoundKey AddRoundKey
. % I
\J CIPHERTEXT CIPHERTEXT

Fig -6: AES visualization

16654 www.ijariie.com 830

Vol-8 Issue-3 2022

3. RESULTS

3.1 Interface of the software

Parameters of Tree Parity Machine

IJARIIE-ISSN(O)-2395-4396

Mo of Input Meuron (M) -
Al

Mo of Hidden Meuron (k) reset
Sync

Range of Weight L)
4 |4 |4|-3]4al4la |2 1 |24 4 |4 |4|-3]4l4la |4 1 |44
4 32 [z 4z 3[4z = 4 32 43 4z 5[4z |4
4 (4 (1[4 [as[2z 331 4 (4 (1[4 45 [22 331
4 14 (14|12 |-2[-2]|0 |3 [4|3 4 14 (1 4|2 |-2[-2|0 |3 [4|3
=34 |-4-3|11 2 [0 |-1|4 [-2|3 34 -4-3|1 2 [0 |-1|4 [-2|3
1[40 423414230 1401423414230
2 |4 [4[2]1]z [4[4a]=]z |3 2 |4 421z [a[4]=]z 3
414 -1(3 |1 |3 [0 |3 [4]-2 414 -1(3 |1 |3 [0 |3 [-4]-1
Key _2Wo3iYU5632_2Wa3iYUS632_2Wo3iYU
Plain text Hello RAJAONARISON 2

Tianandraszana Romeo o
Encryption type AES V‘ Encrypt |
Encrypted text "

v

Decryption type AES v‘ Decrypt |
Decrypted text
sync started Synchronized in 2103 iterations.

Fig -6: Software element

In this figure, the emitter clicks from reset -> start -> sync to synchronize to the generating key with 12bit. The

parameters N, K and L should be complete. In this example, it is resp. 12, 8, 4. should

Before encrypting, the emitter should add the text to be sent in the input text labelled “Plain text”.

After clicking the button, our software gives the “Encrypted text” and it can be seen in figure 7.

16654

www.ijariie.com

831

Vol-8 Issue-3 2022

3.2 Bad algorithm of decyphering

16654

IJARIIE-ISSN(O)-2395-4396

Paramaters of Trew Parity Machine
No of Input Neuron (M) (12 | o

1im
No of Hidden Neuron (K) (] l renet
Range of Weight (L) 4 | S
4 (A (4] [A (A4 |4 [2[4]4 4[4 [4]3][04 [4 (1 |-4]4
A S fa | Ala [l el A [Sf2 [l (Al]z (e
Al (1 fa [ala 2l v [l A [4 (14 (Al fala s [a]
A 1 (1 fafa Falalo o]als A 14 o [2 [alalo [y [l
Alalalafyfafo a2l alalalafizlo [afa 2l
1|0 [-ald (3[4 [a|-4]-a]o 1[40 |2 (3 [ala-2]-al0
PR IR R IR EN (A [l s A lala [y
ala [afa o (o [ale a4l Ala o (o fle (el

Key IJWo!YUM:uWoJ'VU!lH_ZWo!VU ’
Plain taxt Hello RAJAONARISON)
Tianandrasana Romeo v
Encryption type }Aes o tnaw |
Encrypted text 10xVOR1/HnInL+X/LLCGGRKTHYHDY "|
tambMamtlaorBnirm ™o / SaalAT LTI s el F e

Fig -7: Encrypted text

a3 15

1

+
-

eters of Tree Panty Machn

To of lrput Neuron - (V) a2 Soi
No of Hidden Newon K} 3 reset

= L
Rangeof wWecht () 4 |
444 “ r |4134|4a 41 |4/4
LR Mo tind il inink 18 X in
43 Wiz 3 b LS
4ah K {c 1A |ala a2 -3}[:
R ﬁr talalan '49
Al Al b s
L 4P Tl iz i3 133k
244 3 a4zl }441413 3

253 4]

ey | _2Wo NS N2_2Wo MTLUS632_2woNvy

P bt [He210 RATRONARTSON *
Tianandrasans Romeo v

Enoyption type ‘Suvn '1 Enaypt

Encypted text ivlwqbu(un’e!t!qubnciHYl'Oog A
}JNA\’S;Y’V!:RK!’M!’::HQ:MD
IN45zHE v

sormmnies [|
e it]\lemn-,a)@v)me. A
GOLOCHaZ00+0"0)
fDﬁDﬂﬂm v
w0 staried Synehrorwd in 2103 deraton,

Fig -8: Bad algorithm of deciphering

www.ijariie.com 832

Vol-8 Issue-3 2022

Like in this case, the text is ciphered with AES. In addition, instead of deciphering the text with AES methods, we
deciphered it with Serpent. The algorithm runs correctly but it doesn’t give the plain text. So, with multiple

algorithms, the type of algorithm of ciphering makes it more secure. The attacker must know the ciphering method

before breaking the message.

3.3 Evaluation of similarity of key

As the key is 128bits, it will be represented by 32 hexers. The list of keys generated by number of iterations is

represented by figure 9.

N=8, K=12, L=4
0ZY51867XS520ZY51867X55207Y51867
3IRZ7Z361VT583RZ7Z361VIS83RZ7Z361
899UY6_b2cJU899UY6_b2cIUS99UY6 b
ddX1WU_258Y@ddX1WU_258Y8ddX1WU 2
62KS2T131dcZ62KS2T131dcZ62KS2T13
Bm5SYS5V747_Bm5SYS5V747 Om5SYS5V
7bd9Y1780XYe7bd9Y1Z60XYe7bd9Y1Z0
IYBRAXBWEWUS3YBRAXSWEWUS3YORAXSH
7RFUTH2Q7§ T27RFUTH2Q7§T27RFUTH2Q
VP39072h70XVVP398Z2h70XVVP39872h
ZUBX73g5104gZUBX735104g7UBX73gS
Bb20VVg9433Y8b20VWe9433Y8b20Wg9
Y _kc7RV54b71Y_kc7RV54b71Y_kc7RVS
1RW585X98Xc5iRW585X90Xc5iRWS8SX9
eVY34la 76QReVY34la 76QReVY3dla
JUVVZ8S4 V4a3UWIss4 Vaa3UWwzssa

Fig -9: Bad algorithm of deciphering

IJARIIE-ISSN(O)-2395-4396

959

1677
1689
554

2861
1557
1154
3823
1485
751

1848
2643
2632
1835
1299
1278

The similarity of key could by studied using similariy expressed by the equation (2) code on Matlab :

The bit position will be decomposed and the similarity of the key and the next key will be represented in the figure

AxB
sim{4, B) = i

10. The legend of all figures will be resumed by the table 2.

16654

www.ijariie.com

norm(A4).norm(E)

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

Table -1: Table of figure number

Bit position Figure number (Bloc) Colors
1-4 1 Red-Green-Blue-Yellow
5-8 2 Red-Green-Blue-Yellow
9-12 3 Red-Green-Blue-Yellow
13-16 4 Red-Green-Blue-Yellow
17-20 5 Red-Green-Blue-Yellow
21-24 6 Red-Green-Blue-Yellow
25-28 7 Red-Green-Blue-Yellow
29-32 8 Red-Green-Blue-Yellow
Bloc 1 Bloc 2

Fig -10: Blocl — Bloc2

16654 www.ijariie.com 834

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

Bloc 3 Bloc 4

Fig -11: Bloc3 — Bloc4

Bloc 5 Bloc 6

Fig -12: Bloc5 — Bloc6

16654 www.ijariie.com 835

Vol-8 Issue-3 2022

IJARIIE-ISSN(O)-2395-4396

fVﬂ\/

//\ //

Bloc 7

10

Bloc 8

Fig -13: Bloc7- Bloc8

4000

3500

3000

2500

2000

1500

1000

500

Fig -14: Evolution of iteration

Figures 10 until 13 represent the similarity of each key. We can see that similarity doesn’t surpass the 6%. The key

generated doesn’t have a similarity between them. Figure 14 shows that the key is really dynamic and iteration

changes for each experience.

16654

www.ijariie.com 836

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

3.4 Time execution

After some experience, the execution time increases quickly, but when the information doesn’t change a lot, the
ciphering is very quick. So, for text ciphering, adding compressive techniques will improve the result, like Run-
Length Encoding (RLE) or Lempel-Ziv-Welch (LZW).

4. CONCLUSIONS

The neuronal cryptography could be used for generating the key of a mobile communication system with the
similarity less than 6% for each key. The type of algorithm is also very important. So adding more symmetric key
encryption with software will add more security to the text. The execution of time of compressed text is much
quicker than normal text. As a perspective, adding RLE or LZW with this algorithm will be very beneficial.

5. REFERENCES

[1]. V. Gujral, S. Pradhan, “Cryptography using artificial = neural networks”, 2009
https://www.researchgate.net/publication/37394331

[2]. A. Jagadev, “Advanced Encryption Standard (AES) Implementation”, M.Tech Thesis National Institute of
Technology, Rourkela. May, 2009.

[3]. Andreas Ruttor, “Neural Synchronization and Cryptography “, PhD thesis, Bayerische Julius
MaximilianUniversity Wurzburg, 2006

[4]. https://lwww.garykessler.net/library/crypto.html, consultation date : April 2022

[5]. https://www.cl.cam.ac.uk/~rjal4/serpent.html, consultation date : April 2022

16654 www.ijariie.com 837

