
Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 822 

Key generator using neuronal network and 

symmetric text ciphering in the mobile system 

communication  
 

Tianandrasana Romeo Rajaonarison
1
, Paul Auguste Randriamitantsoa

2
 

 
1
 Doctoral School in Sciences and Technology of Engineering and Innovation, Research Laboratory 

Telecommunication, Automatic, Signal and Images, University of Antananarivo, BP 1500, 

Antananarivo101 – Madagascar 

 
2
 Doctoral School in Sciences and Technology of Engineering and Innovation, Research Laboratory 

Telecommunication, Automatic, Signal and Images, University of Antananarivo, BP 1500, 

Antananarivo101 - Madagascar 

  

ABSTRACT 
The mobile communication system uses ciphering techniques to protect the data. On symmetric encryption, the keys 

on the emitter and receiver are the same. The neural network could be used for generating the key.. In this article, 

we use text and it will be ciphered with symmetric encryption like : Serpent, Advanced Encryption Standard (AES). 

After simulation, the 128 bit key generated will be analyzed using similarities between them. The selection of type of 

cyphering text algorithm is important. The receiver could not decipher with the Serpent algorithm if the emitter 

ciphers it with AES and vise-versa.  

Keyword : - Serpent, AES, neuronal, ciphering, text 

 
 

1. INTRODUCTION 

The mobile system communication uses secret key encryption. So, the encryption key can be calculated from the 

decryption key or vice versa. The fig 1 explains the method of symmetric key encryption  

- In general, they are equal: K = K’. This is symmetric encryption. 

- Generally, only one algorithm is used for encryption and decryption: D = E 

- The secret key is secretly shared between sender A represented by Alice and receiver B represented by Bob. 

 

Fig -1: Symmetric key encryption 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 823 

 

 

2. SECURING TEXT USING COMBINED NEURONAL CRYPTOGRAPHY 

 
2.1 princip of ciphering 

The neural key exchange algorithm is a synchronization application. Both partners A and B use a TPM machine 

(Tree Parity Machine) with the same structure. The parameters K (number of hidden layer units), L (the range of 

synaptic weight values made by the two machines A and B) and N (the input layer units for each hidden layer unit) 

are public .  

 

Each TPM machine is initialized with randomly selected weights that must be kept secret. During the 

synchronization process, only the input vectors and the output vectors are transmitted on the public channel. 

Therefore, each user just knows the internal representation of their own TPM, which opens a new vision in the world 

of contemporary cryptography. Keeping information secret is essential for the security of the key exchange protocol. 

After the synchronization is complete, A and B use the modified weights as a common secret key which is thus used 

for AES encryption. 

 

 The main problem of attacker E is that it completely ignores the internal representation of A and the TPM of B. 

While the movement of the weights depends only on σi, it is thus difficult for an attack to correctly guess the state of 

the hidden units. 

 

 
 

Fig -2: Attack of the secret key by E 

 

2.2 Neural cryptography 

The Diffie-Hellman key exchange protocol was introduced by Whitfield Diffie and Martin Hellman in 1976, to 

solve the problem of exchanging keys over an insecure channel in symmetric encryption. However, the Diffie-

Hellman key exchange is vulnerable to a man-in-the-middle attack. In this attack, an adversary E intercepts Alice's 

public key and sends his own public key to Bob.  

 

When Bob transmits his public key, Eve replaces it with her own key and sends it to Alice. Eve and Alice thus agree 

on a shared key and Eve and Bob agree on another shared key. After this exchange, Eve simply decrypts any 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 824 

messages sent by Alice or Bob, then reads and, optionally, modifies them before re-encrypting with the appropriate 

key and transmitting them to the other party. 

 

To remedy the problem posed above, we will build two neural networks, one for each user. Then they have to 

synchronize their networks, and the weights will be the secret keys of the TPM. The type of network chosen here is 

the forward-flow multilayer perceptron and the learning is in supervised mode. Here is a simple neural network 

developed by Rosenblatt in 1968 

 

 

Fig -3: Gradient backpropagation perceptron mode 

This model is a multi-layer forward-flow network (see Figure 3). 

Supervised learning in this case consists of measuring the error between the inputs and the outputs and then 

propagating the error to the neurons of the hidden layers and those of the inputs. 

 

It consists of an input vector X, a hidden layer Sigma , a weight coefficient W between the input vector and the 

hidden layer, and an activation procedure which counts the result value τ. Let's call such a neural network a neural 

machine. It can be described by three parameters: K: the number of hidden neurons, N: the number of input neurons 

connected to each hidden neuron, and L: the maximum value for a weight {-L,..+L}. Two partners have the same 

neural machines.  

 

To count the output value, we use a simple method: 

                                (1) 

 

A question arises, how can we update the weights? We update the weights when the output values of the neural 

machines are equal.  

 

 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 825 

There are three different rules: 

Table -1: learning rules 

 

 

 

Hebb’s learning rule 

 

 

 

Anti- Hebb’s learning rule 

 

 

 

Random-walk’s learing rule 

 

Here,  is a special function.  verified :  

(a, b) = 0 if a <> b; others  = 1. 

 The g function keep the weight in the gamma  -L … + L. x is the input vector et w is the ponderation vector. After 

the machines are synchronized, their weights are equal: we can use them to build a shared key that will be 

impossible to hack due to the existence of chaotic synchronization. 

 

2.3 Syncrhonization algorithm 

 

.We will follow the following steps for neural key generation which is based on neural networks: 

 

1. First determine the neural network parameters namely: k, N and L 

2. Random initialization of neural network weights A and B. 

3. Repeat 4 to 7 until synchronization occurs. 

4. Calculated the inputs of the hidden layers. 

5. The output bit is generated and exchanged between the two machines A and B. 

6. If the output vectors of the two machines are equal i.e. τA = τB then the corresponding weights are 

modified using the learning rule of Hebb and Anti-Hebbian. 

7. Once synchronization is complete, the synaptic weights are the same for both networks so these 

weights are used as the secret key. 

 

This key is subsequently used to encrypt a text to be transmitted over an unsecured channel using the AES 

encryption algorithm with a key size of 128 bits, 192 bits and 256 bits. 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 826 

 

Fig -4: Neural Key Exchange Algorithm 

 

2.4 Serpent algorithm 

The Serpent key schedule consists of 3 main stages. In the first stage the key in initialized by adding padding if 

necessary. This is done in order to make short keys map to long keys of 256-bits, one "1" bit is appended to the end 

of the short key followed by "0" bits until the short key is mapped to a long key length. 

 

 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 827 

In the next phase, the "prekeys" are derived using the previously initialized key. 32-bit key parts or XORed, 

the FRAC which is the fraction of the Golden ratio and the round index is XORed with the key parts, the result of 

the XOR operation is rotated to left by 11. The FRAC and round index were added to achieve an even distribution of 

the keys bits during the rounds. 

 

Finally the "subkeys" are derived from the previously generated "prekeys". This results in a total of 33 128-bit 

"subkeys" 

At the end the round key or "subkey" are placed in the "initial permutation IP" to place the key bits in the correct 

column. 

 

#define FRAC 0x9e3779b9     //  fractional part of the golden ratio 

#define ROTL(A, n) (A << n) | (A >> (32 - n)) 

 

uint32_t words[132]; // w 

uint32_t subkey[33][4] // sk 

 

/* key schedule: get prekeys */ 

void w(uint32_t *w) { 

 for (short i = 8; i < 140; i++) { 

  w[i] = ROTL((w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ FRAC ^ (i - 8)), 11); 

 } 

} 

 

/* key schedule: get subkeys */ 

void k(uint32_t *w, uint32_t (*sk)[4]) {  

 

 uint8_t i, p, j, s, k; 

  

 for (i = 0; i < 33; i++) { 

  p = (32 + 3 - i) % 32; 

  for (k = 0; k < 32; k++) { 

   s = S[p % 8][((w[4 * i + 0] >> k) & 0x1) << 0 | 

       ((w[4 * i + 1] >> k) & 0x1) << 1 | 

       ((w[4 * i + 2] >> k) & 0x1) << 2 | 

       ((w[4 * i + 3] >> k) & 0x1) << 3 ]; 

   for (j = 0; j < 4; j++) { 

    sk[i][j] |= ((s >> j) & 0x1) << k; 

   } 

  } 

 } 

} 

  

2.4.1 S-Boxes 

The Serpent s-boxes are 4-bit permutations, and subject to the following properties: 

- a 1-bit input difference will never lead to a 1-bit output difference, a differential characteristic has a 

probability of 1:4 or less 

- linear characteristics have a probability between 1:2 and 1:4, linear relationship between input and output 

bits has a probability between 1:2 and 1:8. 

- the nonlinear order of the output bits as function of the input bits is 3. However there have been output bits 

found which in function of the input bits have an order of only 2. 

https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Permutation


Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 828 

The Serpent s-boxes have been constructed based on the 32 rows of the DES s-boxes. These were transformed 

by swapping entries, resulting arrays with desired properties were stored as the Serpent s-boxes. This process was 

repeated until a total of 8 s-boxes were found.  

2.4.2 Initial permutation (IP) 

The initial permutation works on 128 bits at a time moving bits around. 

 

for i in 0 .. 127 

    swap( bit(i), bit((32 * i) % 127) ) 

 

2.4.3 Final permutation (FP) 

The final permutation works on 128 bits at a time moving bits around. 

 

for i in 0 .. 127 

    swap( bit(i), bit((2 * i) % 127) ) 

2.4.3 Linear transformation (LT) 

Consists of XOR, S-Box, bit shift left and bit rotate left operations. These operations are performed on 4 32-bit 

words. 

 

for (short i = 0; i < 4; i++) { 

    X[i] = S[i][B[i] ^ K[i]]; 

} 

X[0] = ROTL(X[0], 13); 

X[2] = ROTL(X[2], 3 ); 

X[1] = X[1] ^ X[0] ^ X[2]; 

X[3] = X[3] ^ X[2] ^ (X[0] << 3); 

X[1] = ROTL(X[1], 1 ); 

X[3] = ROTL(X[3], 7 ); 

X[0] = X[0] ^ X[1] ^ X[3]; 

X[2] = X[2] ^ X[3] ^ (X[1] << 7); 

X[0] = ROTL(X[0], 5 ); 

X[2] = ROTL(X[2], 22); 

for (short i = 0; i < 4; i++) { 

    B[i + 1] = X[i]; 

} 

https://en.wikipedia.org/wiki/Data_Encryption_Standard


Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 829 

 

Fig -5: Serpent visualization 

The fig 5 resume all process for having ciphering text with Serpent algorithm. 

 

2.5 AES 

The Rijndael scheme is a block cipher and divides the incoming plaintext into a block with four rows and four 

columns. A block has a total of 16 bytes, so each box contains one byte.  

 

Each block goes through several rounds of four steps during ciphering or deciphering. Depending on the key 

length, there are ten rounds for AES-128, twelve rounds for AES-192 and a total of 14 rounds for AES-256.  

 

 

 

 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 830 

The four steps are repeated in each round. 

The symmetrical encryption procedure with AES in four steps 

 Step 1 – SubKeys: Here, Rijndael uses an S-box. This indicates with which value the algorithm replaces 

which byte in the blocks. The S-Box is derived from the AES key. 

 Step 2 – ShiftRow: Now Rijndael shifts the bytes in the blocks line by line by a certain number of columns 

to the left. 

 Step 3 – MixColumn: At this point, the AES algorithm mixes the bytes using a mathematical procedure 

called a linear transformation. 

 Step 4 – AddRoundKey: AES finally links the current round key with the values of the blocks. 

Encryption with the Advanced Encryption Standard goes through these four steps as often as the key length dictates. 

The result is the so-called ciphertext, which no longer reveals anything of the content of the message or information 

to the naked eye. During decryption, Rijndael goes through all the steps over all the rounds in reverse order. This 

is how the plaintext is created from the ciphertext. 

 

 

Fig -6: AES visualization 

 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 831 

3. RESULTS  

3.1 Interface of the software 

 

Fig -6: Software element 

In this figure, the emitter clicks from reset -> start -> sync to synchronize to the generating key with 12bit. The 

parameters N, K and L should be complete.  In this example, it is resp. 12, 8, 4. should 

Before encrypting, the emitter should add the text to be sent in the input text labelled “Plain text”.  

After clicking the button, our software gives the “Encrypted text” and it can be seen in figure 7.  



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 832 

 

Fig -7: Encrypted text 

3.2 Bad algorithm of decyphering 

 

Fig -8: Bad algorithm of deciphering 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 833 

Like in this case, the text is ciphered with AES. In addition, instead of deciphering the text with AES methods, we 

deciphered it with Serpent. The algorithm runs correctly but it doesn’t give the plain text. So, with multiple 

algorithms, the type of algorithm of ciphering makes it more secure. The attacker must know the ciphering method 

before breaking the message. 

 

3.3 Evaluation of similarity of key 

As the key is 128bits, it will be represented by 32 hexers. The list of keys generated by number of iterations is 

represented by figure 9. 

 

Fig -9: Bad algorithm of deciphering 

The similarity of key could by studied using similariy expressed by the equation (2) code on Matlab : 

 

 

(2) 

The bit position will be decomposed and the similarity of the key and the next key will be represented in the figure 

10. The legend of all figures will be resumed by the table 2. 

 

 

 

 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 834 

Table -1: Table of figure number 

 

Bit position Figure number (Bloc) Colors 

1-4 1 Red-Green-Blue-Yellow 

5-8 2 Red-Green-Blue-Yellow 

9-12 3 Red-Green-Blue-Yellow 

13-16 4 Red-Green-Blue-Yellow 

17-20 5 Red-Green-Blue-Yellow 

21-24 6 Red-Green-Blue-Yellow 

25-28 7 Red-Green-Blue-Yellow 

29-32 8 Red-Green-Blue-Yellow 

 

 

 

 

  

Bloc 1 Bloc 2 

Fig -10: Bloc1 – Bloc2 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 835 

 
 

Bloc 3 Bloc 4 

Fig -11: Bloc3 – Bloc4 

 

 

 
 

Bloc 5 Bloc 6 

Fig -12: Bloc5 – Bloc6 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 836 

 
 

Bloc 7 Bloc 8 

Fig -13: Bloc7– Bloc8 

 

Fig -14: Evolution of iteration 

Figures 10 until 13 represent the similarity of each key.  We can see that similarity doesn’t surpass the 6%. The key 

generated doesn’t have a similarity between them. Figure 14 shows that the key is really dynamic and iteration 

changes for each experience. 



Vol-8 Issue-3 2022               IJARIIE-ISSN(O)-2395-4396 
   

16654 www.ijariie.com 837 

 3.4 Time execution 

After some experience, the execution time increases quickly, but when the information doesn’t change a lot, the 

ciphering is very quick. So, for text ciphering, adding compressive techniques will improve the result, like Run-

Length Encoding (RLE) or Lempel-Ziv-Welch (LZW). 

4. CONCLUSIONS  

The neuronal cryptography could be used for generating the key of a mobile communication system with the 

similarity less than 6% for each key. The type of algorithm is also very important. So adding more symmetric key 

encryption with software will add more security to the text. The execution of time of compressed text is much 

quicker than normal text. As a perspective, adding RLE or LZW with this algorithm will be very beneficial. 

 

5. REFERENCES  

[1]. V. Gujral, S. Pradhan, “Cryptography using artificial neural networks”, 2009 

https://www.researchgate.net/publication/37394331    

[2]. A. Jagadev, “Advanced Encryption Standard (AES) Implementation”, M.Tech Thesis National Institute of 

Technology, Rourkela. May, 2009.  

[3]. Andreas Ruttor, “Neural Synchronization and Cryptography “, PhD thesis, Bayerische Julius 

MaximilianUniversity Wurzburg, 2006  

[4]. https://www.garykessler.net/library/crypto.html, consultation date : April 2022 

[5]. https://www.cl.cam.ac.uk/~rja14/serpent.html, consultation date : April 2022 

  

  

 


