
Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 424

Learning rules using genetic algorithms:

application to a knowledge base in an expert

system generator

RAHARIMANANA Tsilavina Antonio, ROBINSON Matio, ANDRIAMANOHISOA Hery ZO

student, Cognitive sciences and applications, University of Antananarivo in STII, Madagascar

Doctor, Cognitive sciences and applications, University of Antananarivo in ESPA, Madagascar

Professor, Cognitive sciences and applications, University of Antananarivo in ESPA, Madagascar

ABSTRACT

Nowadays, progress in machine learning is phenomenal, thanks to the computing power of current computers. The

application of this field is very large, ranging from mobile phone to industrial process control. In this article we

used genetic algorithm for learning rules in order to incorporate into the knowledge base of an expert system. Our

method is a supervised machine learning that uses VL2 language proposed by [1] and [2]. In order to reduce the

length of chromosome, we transformed the bit string into integer according to [3] method which is detailed below.
an expert system is software composed of a rule base, a fact base, an inference engine and a user interface. in order

to automatically learn rules based on collected data we will incorporate a learning module into our expert system.

Keyword: - genetic algorithms, expert system, Knowledge based, learning rules

1. Introduction

Several method of supervised machine learning with genetic algorithm have been proposed. [5] uses an adaptative

search technique based on a genetic algorithm which learns to classify rules which it calls GABIL. [6] uses another

method called SIAO1 to learn rules in first order logic. [3] proposes a new method for encoding knowledge based on

genetic algorithms in order to find decisions rules in a supervised learning context with genetic operators. [7] uses

another form of representation for genetic algorithms. He proposes the PGA algorithm in order to learn a predicate

and whose form of the predicate is: (P, x, y) where x and y are the arguments and P the predicate. [8] uses genetic

algorithm to classify fuzzy rules to diagnose heart disease. For this, he proposes the AGAFL algorithm. [9] presents

ECL as a learning system for first order logic. An extension of ECL was proposed by [10], MOECL and ECL have

the same representation method. [11] proposes a self-learning algorithm that he calls SLGA.

1.1 Proposed method

we propose to use a representation like REGAL or DOGMA but transformed into natural coding with the method of

[1]. We use Michigan approach i.e. one chromosome represents one rule like the figure:

If attrib a And attrib b … Then class A

Fig-1: rule representation

Where attrib a, attrib b etc. are the conditions and class A is the conclusion.

For coding an example in binary, we stored the example in a dictionary with the form (key, value). We made an

extraction of each value for an attribute.

For example, consider a ruler having five attributes: weight, color, shape, far. this rule can be represented according

to the figure below:

Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 425

Fig-2: coding rule to bit string

Where x is the value for attribute weights, color, form and far

Fig-3: conversion bit string into natural coding

To transform the binary strings into natural coding for each attribute we use the formula:

 (1)

Where is the representation of the rule in binary coding for an attribute, is the value of the i
th

 bit, either 0 or 1

from right to left.

For the mutation of natural coding we use the formula used by [3]:

 (2)

Where % is the remainder of the division and is the integer part.

For the crossover [3] uses the following equation:

 (3)

With and

This calculation reduces the speed of the method, in order to improve the performance instead of using the equation

to calculate the mutation of order j we use the “and logical” operator and the “or logical” operator thus we improve

the performance of the algorithm.

For example:

 for 11 = 01011 the mutation of order 5 are:

 10 = 01010

 9 = 01001

 15 = 01111

 3 = 00011

 27 = 11011

 And for 19 = 10011 the mutation of order 5 are:

 18 = 10010

 17 = 10001

 23 = 10111

 27 = 11011

Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 426

 3 = 00011

Recomb (11,19) = {mut (11) ∪ {11}} ∩ {mut (19) ∪ {19}} = {10,9,15,3,27} ∩ {18,17,23,27,3,19} = {3,27}

This result is obtained by doing a logical “and” and a logical “or”:

recomb (11,19) = {11 19} {11 19} = {3,27} (4)

Recomb selection between “or” or “and” is guided by fitness function.

1.2 fitness function

for the performance function, we apply method uses by [4] for evaluating rule. This method uses four variable gives

by confusion matrix below:

Table-1: confusion matrix for a class C

Prediction class

Class

 C Not C

C True positif False positif

Not C False negatif True negatif

Where TP: number of examples which covert the conditions (condm) and class C

 FP: number of examples which covert the conditions (condm) but not class C

 FN: number of examples don’t covert the conditions (condm) but covert class C

 TN: number of examples don’t covert the conditions (condm) nor class C

The confidence factor of a rule is given by:

To calculate that a rule covering attributes and having class c, we use the following equation:

And the fitness function is given by:

1.3 creating next generation

for the creation of the first generation, we take an example and we cover this example. we evaluate each individual

then the loop for selection, recombination and the mutation start until the stopping criterion is met. To create the

next generation, a selection is made by roulette wheel and then the selected individuals are inserted into the

population. The best of this population will insert to the next generation. We carry out crossover and mutation in

order to populate next generation.

2. Genetic algorithm and expert system flow chart
in the figure below is the architecture of our expert system. the rule base and the fact base are the knowledge bases,

the inference engine works according to modus ponens. The inference engine works in backward chaining and

forward chaining.

Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 427

Fig-4: flow-chart of our algorithm

Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 428

Input: examples

 Number of generations

 Population size

 Mutation probability

 Crossover probability

output: one rule

while there are examples

 Initialize population

 i Number of generations

 For i

 Evaluate population with equation (7)

 Parent select with roulette wheel

 Next_generation good fitness function of antecedent generation

 offspring recombine and mutate parent

 Next_generation Next_generation offspring

 End for

Select the best of last generation

Return rule

End while

Fig-5: flow-chart of our expert system

3. Algorithm

the algorithm below only stops when there are no more examples to process.

Vol-9 Issue-5 2023 IJARIIE-ISSN(O)-2395-4396

21596 www.ijariie.com 429

4. CONCLUSIONS

In order to avoid the calculation of the mutation of order j, we simply have the logical operator “∧” and the logical

operator “∨”. In this learning method the genes for the conditions attributes participate in recombination and

mutation during the evolutionary phase. This method applies for discrete and nominal attributes. In our future work

we will look for a method to discretize continuous attributes in order to use the natural coding representation. We

will use this method on data provided by UCI repository such as data on mushrooms, car and etc.

5. ACKNOWLEDGEMENT

I would like to thank the cognitive sciences and applications doctoral reception team. I would also like to thank the

STII doctoral school.

6. REFERENCES

[1]. A. Giordana et al., learning disjunctive concepts with distributed genetic algorithms, IEEE, 1994

[2]. J. Hekanaho, DOGMA: A GA-Based relational learner, TUCS Technical Report, 1997

[3]. J. S. Aguilar et al., Natural encoding for evolutionary supervised learning, IEEE, 2006

[4]. A. A. Freitas, A review of evolutionary algorithms for data mining, Springer, 2010

[5]. K. A. De Jong et William M. Spears, learning concept classification rules using genetic algorithms,1995

[6]. S. Augier et al., Learning first order logic rules with a genetic algorithm, 2000

[7]. Ya-Wen Chang Chien et Yen-Liang Chen, A phenotypic genetic algorithm for inductive logic programming,

Elsevier, 2008

[8]. G. Thippa Reddy et al., Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis,

Springer Verlag, 2019

[9]. F. Divina, Evolutionary concept learning in first order logic, IOS Press

[10]. C. Dandois et al, A multi-objective evolutionary concept learner, IEEE, 2010

[11]. Ronghua Chen et al., A self-learning genetic algorithm based on reinforcement learning for flexible job-shop

scheduling problem, Elsevier, 2020

