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ABSTRACT 

 
Nowadays, progress in machine learning is phenomenal, thanks to the computing power of current computers. The 

application of this field is very large, ranging from mobile phone to industrial process control. In this article we 

used genetic algorithm for learning rules in order to incorporate into the knowledge base of an expert system. Our 

method is a supervised machine learning that uses VL2 language proposed by [1] and [2]. In order to reduce the 

length of chromosome, we transformed the bit string into integer according to [3] method which is detailed below. 
an expert system is software composed of a rule base, a fact base, an inference engine and a user interface. in order 

to automatically learn rules based on collected data we will incorporate a learning module into our expert system. 
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1. Introduction  

Several method of supervised machine learning with genetic algorithm have been proposed. [5] uses an adaptative 

search technique based on a genetic algorithm which learns to classify rules which it calls GABIL. [6] uses another 

method called SIAO1 to learn rules in first order logic. [3] proposes a new method for encoding knowledge based on 

genetic algorithms in order to find decisions rules in a supervised learning context with genetic operators. [7] uses 

another form of representation for genetic algorithms. He proposes the PGA algorithm in order to learn a predicate 

and whose form of the predicate is: (P, x, y) where x and y are the arguments and P the predicate. [8] uses genetic 

algorithm to classify fuzzy rules to diagnose heart disease. For this, he proposes the AGAFL algorithm. [9] presents 

ECL as a learning system for first order logic. An extension of ECL was proposed by [10], MOECL and ECL have 

the same representation method. [11] proposes a self-learning algorithm that he calls SLGA. 

 

1.1 Proposed method 

we propose to use a representation like REGAL or DOGMA but transformed into natural coding with the method of 

[1].  We use Michigan approach i.e. one chromosome represents one rule like the figure: 

 

If attrib a And attrib b … Then class A 

Fig-1: rule representation 

 

Where attrib a, attrib b etc. are the conditions and class A is the conclusion. 

For coding an example in binary, we stored the example in a dictionary with the form (key, value). We made an 

extraction of each value for an attribute.  

For example, consider a ruler having five attributes: weight, color, shape, far. this rule can be represented according 

to the figure below: 
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Fig-2: coding rule to bit string 

 

Where x is the value for attribute weights, color, form and far 

 

 
Fig-3: conversion bit string into natural coding 

 

To transform the binary strings into natural coding for each attribute we use the formula: 

 

 (1) 

Where  is the representation of the rule in binary coding for an attribute,  is the value of the i
th

 bit, either 0 or 1 

from right to left. 

For the mutation of natural coding we use the formula used by [3]: 

 

 (2) 

Where % is the remainder of the division and  is the integer part. 

For the crossover [3] uses the following equation: 

 

 (3) 

With  and  

 

This calculation reduces the speed of the method, in order to improve the performance instead of using the equation 

to calculate the mutation of order j we use the “and logical” operator and the “or logical” operator thus we improve 

the performance of the algorithm. 

 

For example: 

 

 for 11 = 01011 the mutation of order 5 are: 

           10 = 01010  

             9 = 01001 

           15 = 01111 

                           3 = 00011 

            27 = 11011 

  And for 19 = 10011 the mutation of order 5 are: 

            18 = 10010 

           17 = 10001 

                          23 = 10111 

                          27 = 11011 
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                            3 = 00011 

 

Recomb (11,19) = {mut (11) ∪ {11}} ∩ {mut (19) ∪ {19}} = {10,9,15,3,27} ∩ {18,17,23,27,3,19} = {3,27} 

This result is obtained by doing a logical “and” and a logical “or”: 

 

recomb (11,19) = {11  19} {11 19} = {3,27} (4) 

Recomb selection between “or” or “and” is guided by fitness function. 

 

1.2 fitness function 

for the performance function, we apply method uses by [4] for evaluating rule. This method uses four variable gives 

by confusion matrix below: 

 

Table-1: confusion matrix for a class C 

 

 

 

Prediction class 

Class 

 C Not C 

C True positif False positif 

Not C False negatif True negatif 

 

Where TP: number of examples which covert the conditions (condm) and class C 

            FP: number of examples which covert the conditions (condm) but not class C 

            FN: number of examples don’t covert the conditions (condm) but covert class C 

            TN: number of examples don’t covert the conditions (condm) nor class C 

 

The confidence factor of a rule is given by: 

 

To calculate that a rule covering attributes and having class c, we use the following equation: 

 

And the fitness function is given by: 

 

1.3 creating next generation 

for the creation of the first generation, we take an example and we cover this example. we evaluate each individual 

then the loop for selection, recombination and the mutation start until the stopping criterion is met. To create the 

next generation, a selection is made by roulette wheel and then the selected individuals are inserted into the 

population. The best of this population will insert to the next generation. We carry out crossover and mutation in 

order to populate next generation.  

 

2. Genetic algorithm and expert system flow chart 
in the figure below is the architecture of our expert system. the rule base and the fact base are the knowledge bases, 

the inference engine works according to modus ponens. The inference engine works in backward chaining and 

forward chaining. 
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Fig-4: flow-chart of our algorithm 
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Input: examples 

 Number of generations 

 Population size 

 Mutation probability 

 Crossover probability 

output: one rule 

while there are examples 

 Initialize population 

 i              Number of generations 

 For i 

  Evaluate population with equation (7) 

  Parent             select with roulette wheel 

  Next_generation              good fitness function of antecedent generation   

  offspring                     recombine and mutate parent 

  Next_generation                 Next_generation  offspring 

 End for 

Select the best of last generation 

Return rule 

End while   

 

Fig-5: flow-chart of our expert system 

3. Algorithm 

the algorithm below only stops when there are no more examples to process. 
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4. CONCLUSIONS  

In order to avoid the calculation of the mutation of order j, we simply have the logical operator “∧” and the logical 

operator “∨”. In this learning method the genes for the conditions attributes participate in recombination and 

mutation during the evolutionary phase. This method applies for discrete and nominal attributes. In our future work 

we will look for a method to discretize continuous attributes in order to use the natural coding representation. We 

will use this method on data provided by UCI repository such as data on mushrooms, car and etc.  

 

5. ACKNOWLEDGEMENT  

I would like to thank the cognitive sciences and applications doctoral reception team. I would also like to thank the 

STII doctoral school. 

 

6. REFERENCES 

[1]. A. Giordana et al., learning disjunctive concepts with distributed genetic algorithms, IEEE, 1994 

[2]. J. Hekanaho, DOGMA: A GA-Based relational learner, TUCS Technical Report, 1997 

[3]. J. S. Aguilar et al., Natural encoding for evolutionary supervised learning, IEEE, 2006 

[4]. A. A. Freitas, A review of evolutionary algorithms for data mining, Springer, 2010 

[5]. K. A. De Jong et William M. Spears, learning concept classification rules using genetic algorithms,1995 

[6]. S. Augier et al., Learning first order logic rules with a genetic algorithm, 2000 

[7]. Ya-Wen Chang Chien et Yen-Liang Chen, A phenotypic genetic algorithm for inductive logic programming, 

Elsevier, 2008 

[8]. G. Thippa Reddy et al., Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis, 

Springer Verlag, 2019 

[9]. F. Divina, Evolutionary concept learning in first order logic, IOS Press 

[10]. C. Dandois et al, A multi-objective evolutionary concept learner, IEEE, 2010 

[11]. Ronghua Chen et al., A self-learning genetic algorithm based on reinforcement learning for flexible job-shop 

scheduling problem, Elsevier, 2020 
 
 

 

 

 

 


