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ABSTRACT 
Interior point methods are a class of computational methods for solving optimization problem. This 

methods were inutility proposed by Frish [9]in 1955,Fiacco and McCormick[7]in 1968 proved global convergence 

for general interior point method . In this paper we concerns the formulation and analysis of these methods and  

present a line search primal-dual interior-point method ,  make some considerations about inequality constrained 

problems and explain the fundamental ideas involved in the present approach. Then, a basic algorithm for 

inequal1ty constrained optimization is presented. The numerically results about this methods is reported  . 

 

Keyword : - constrained optimization ,nonlinear programming , primal-dual interior point methods,  merit 
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1. Introduction 
In this paper we propose a primal-dual interior point method that solves nonlinearly inequality constrained 

optimization problems. To obtain a fast algorithm for nonlinear optimization problems using interior point methods 

which  originally proposed during the 1960s  , A large body of theory about the barrier function method was 

developed during the 1960s In particular, among others, Fiacco and McCormick[8] considered solving NLP 

problems by minimizing a sequence of smooth barrier-penalty merit functions. The inclusion of penalty terms in the 

merit function eliminates the equality constraints and results in unconstrained subproblems [ 15 ], The development 

of modern nonlinear interior-point methods was influenced by   [ 2,4, ], see also the works of Byrd, Hribar , and 

Nocedal [5 ], El-Bakry, Tapia [3] , Liu, X.W, and Sun [12] and Yamashita [17] For an analysis of interior-point 

methods that use filter globalization see, for example, W¨achter and Biegler [15] and  The book by Nocedal, and 

Wright [13]and also Antonious and Sheng[1] gives a thorough presentation of several interior-point methods.  

In this paper The idea is to transform the problems into a sequence of parameterized barrier function 

minimization problems this is presented in  section 2 , In Section 3, we describe basic concepts in the primal-dual 

interior point method and develop the algorithm to a  line search interior point methods. Section 4 reports the results 

of numerical experiment 
 

2. A class of interior point methods for convex  NLP 

This paper consider a method for solving the optimization problem 
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Where x is a vector of dimension n, and functions 
mnn RRcandRRf  :: are real valued 

and twice continuously differentiable. and E  and I  are finite index sets equality and inequality of 

constraints respectively. At any feasible set x of problem (1.1), we can define the active set A(x) to be the 

union of set E with the indices of the active inequality constraints at point x. the following two definitions 

are the linear independence constraint qualification(LICQ) and Mangasarian-Fromovitz constraint 

qualification (MFCQ)in nonlinear programming  

Definition 1.1 (LICQ) At given point x, LICQ holds if and only if the set of active constraint gradients 

{
    xAixci  |

 is linearly independent. 

Definition 1.2 (MFCQ) At given point x, MFCQ holds if and only if there exists a vector d
nR such that 
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And the set of equality constraint gradient 
    xAixci  |

 is linealy independent. 

Standerd interior point methods for 1 (see Nocedal and Wight[13 ].Gould, Orban and Toint [11] introduce 

non-negative slack s 
mR  

  Problems with  nonlinear inequality constraints can be written as equalities by adding a new variable . 

The  slack variable s 
mR associate with all the inequality constraints, . Reformulation of (1.1a-1.1c) are 

bxcts
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s ≥ 0. 

We will focus on the minimization problem with inequality constraints . Equality constraints can 

be included in the formulation, but we ignore them to simplify the presentation. We will solve the 

nonlinear optimization problem by converting it into a nonlinear complementarity problem. We will 

present an interior point algorithm for this problem, analyze its properties and discuss conditions for 

polynomial complexity. Then we present a direct approach of handling nonlinear inequality constraints 

using barrier functions and introduce the concept of self-concordant barrier functions. 

It is impossible to cover interior methods for nonlinear optimization thoroughly in anything less 

than a large volume. A major goal of this article is thus to show connections between classical and 

modern ideas and to cover highlights of both theory and practice; readers interested in learning more 

about interior-point methods will find an abundance of papers and books on the subject There is a vast 

literature for interior point methods for  nonlinear  optimization problem for the surveys e.g. by Forsgren, 

Gill, and wright[8]also Coud,Orban, and Toint[11], wachter and Biegler [14] also Byrd, Lui, and 

Nocedal[4] gives a presentation of several interior point methods. The class of primal-dual path-following 

interior point methods is considered the most successful. Mehrotra's predictor-corrector 

algorithm provides the basis for most implementations of this class of methods. KKT Conditions and 

search direction, We consider the constrained nonlinear optimization problem interior methods have 

advanced so far, so fast, that their influence has transformed both the theory and practice of constrained 

https://en.wikipedia.org/wiki/Mehrotra_predictor-corrector_method
https://en.wikipedia.org/wiki/Mehrotra_predictor-corrector_method


Vol-3 Issue-2 2017  IJARIIE-ISSN(O)-2395-4396   

4892 www.ijariie.com 5610 

optimization Gilbert, and Nocedal [ 6 ] considered an interior-point algorithm based on the barrier 

function method. Yamashita and Yabe [16 ] considered a quasi-Newton interior-point formulation and 

used the Dennis-More´ theory [7 ] to drive a characterization of those methods.  

3. INTERIOR –POINT ALGORITHM  

We will focus on the minimization problem as we mention above  with inequality constraints (1.1c). 

Equality constraints can be included, but we ignore them to simplify the presentation. The approximate 

problem Equations 2 is a sequence of equality constrained problems. These are easier to solve than the 

original inequality-constrained problem Equation 1. To solve the approximate problem, the algorithm find 

the  steps at each iteration, A direct step is (x, s). This step attempts to solve the KKT equations, Equation 

2 without the second  Equation 2-1b, for the approximate problem via a linear approximation. This is also 

called a Newton step. 

We consider two algorithm, the basic one and the second  one a adopts the merit function as that of 

[5,6], but is based on the line search strategy. This algorithm also satisfied the condition that all the limit 

point are KKT point, one of the limit point is a fritz-John point and one of the limit point is an infeasible 

point. 

Let us consider optimization problem (2.1a-2.1c) applying classical log-barrier function to this 

problem we obtain 
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Where µ→0 is the penalty parameter. This yields the minimization problem 
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The Lagrangian for the problem in equation (2.2) is 
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The solution of problem satisfies the following conditions  
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Which are the KKT conditions. Here A (x) is  the Jacobin matrix of the function c(x), and  is 

the  Lagrange multiplier .We define S as the diagonal matrix whose diagonal entry is  given by the vectors 

s, and let e = (1, 1, . . . , 1)T. multiplying the equation (3.1b) by s we obtain  the primal-dual system 
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Where Λ is the diagonal entry (λ1, λ2, λ3,…, λq) 

 Appling Newton's method [7, 14, 16].to the system (4.1a-4.1c) leads to the following linear system for 

Newton direction 
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Where 
lxx

2
is the Hessian of the Lagrangian of the problem (2). The vector (px,ps,pλ)must be 

determined also we can find one step of the interior-point method (IPM) algorithm 

   ,,,,, TTT sxsx  
is as follows 

)1.6(, apsspxx ssxs   

 

)1.6(, bpz  

 

Where α is  a step length chosen as 
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with τ ∈  (0, 1).To make the matrix in (5) symmetric multiply the equation by –I and the second equation 

by 
1S  we will obtained 
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The  system (7) become 
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With  1,0 . By solving equation (9.2) for ps, we get 
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The system (8) is reduced to  
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we can used numerical linear algebra  technology developed in [ 13 ] to obtain the solution of (9).To 

control the convergence we use the merit function of [13 ] 
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This merit function is differentiable with respect to the elements of x and s . The penalty 

parameter 
0

  can be updated by using the strategies described in      [1,13 ].In a line search method, 

after the step p has been computed and the maximum step lengths 

    sps ss   1:1,0max
 have been determined, we perform a backtracking line 

search that computes the step lengths 
],0( max

ss  
providing sufficient decrease of the merit 

function 

 

        14max);,,( yxAyxAxfysxE
T

i

T

E 
 

Algorithm 1 

Given a starting point 
nn RsandRx  00

that strictly satisfied the constraints i.e. 00 x , initially 

slack variable s0 and compute the multipliers y0 and z0 >0 select an initial barrier parameter 0 >0 and 

parameters  1,0,  .initialize k:=0 

Repeat until a stopping test for the problem (1.1  ) is satisfied 

 Repeat until 
  kkkkk ysxE  ,,,

 

Compute the search direction (px,ps,pλ)which satisfies the linearized constraints; 

Compute s
 

Compute 
 111 ,,  kkk ysx

 

Set kk  1 and k=k+1 

End 

Choose 
 kk  ,0

; 

End 

The algorithm 1.1 can converge to an infeasible point if the algorithm started from any point and the 

algorithm many not find the stationary point . hence we introduce a new interior point method as in           

[ 13,14  ]. The new algorithm behaves well in terms of global convergence and it can always find a point 
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with certain stationary properties, also some assumptions must be considered of implementation that 

guarantee the good behavior of line search interior point method. To control the convergence we identify 

some essential factors of line search interior point method ; these factors are an appropriate merit 

function, a suitable control procedure of slack vector and a proper steplength. Here we adopts the same 

merit function as in [13,14   ] these function is defined as follows 

     14)(log;,
1
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Where ρ>0 is a penalty parameter update automatically in each iterations the function (14) is 

differentiable , let the derivative of this function along the Pk be 

 kpsxD ,,
 and let 
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Where 
 kksx xfgppp  ,),(

and as in [ 13,14  ] 

    ;;,, kk ppsxD 
which less than zero i.e. pk is a descent direction of the merit function. 

The linesearch  interior-point algorithm for convex programming problems. 

We now give the second Algorithm with the series of modification of algorithm 1 

 

3.1LINE SEARCH INTERIOR-POINT METHOD  

We now give a more detailed description of a line search interior-point method. We denote by 

Dφ(x,s;p) the directional derivative of the merit function υat (x,s) in the direction p.  

The interior-point algorithm for convex programming problems can now be summarized as in [ 13,14 ] 

Algorithm.2 . 

Choose the initial set x0 and s0 > 0, and compute initial values for the multiplier  λ > 0. Select an 

initial barrier parameterμ > 0, parameters  1,0,  , 
2

1
0  , select 

21  and so that 

21 200121   seand  

Set k ← 0.  

Compute the primal-dual direction p = (px , ps ) 

If      16
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kklet  1 ,update ρk to ρk+1 such that 16 holds 

Compute   sps ss   1:]1,0(maxmax
; 995.0  

Compute step lengths αs, satisfying both kskk sps   and 

υ (xk + αs px , sk + αs ps;ρk+1) ≤ υ (xk , sk;ρk+1 ) + σ0δjαkDυ (xk , sk ; pk+1); 

increase j until there exists a scalar  1,0 satisfying     1721 ePPSe kskjk     

 where Ps is diagonal matrix of ps 

for the fixed j, let  be the max  1,0 satisfying (17) ,compute  α
max

 

Compute (xk+1, sk+1, λk+1) using the equations 

Xk+1=xk+αkpx ,sk+1=sk+αkps λk+1=λk+1 =λk+ᵞkpλ 

if the stopping criterion holds, stop ;( The stopping conditions are based on the error function E) 

update the approximation Bk ; 

Set k ← k + 1; 

End. 

This framework is fairly general and covers many of the current methods that use line 

searches (e.g. [3, 4, 9,10,11,17]). The strategy that updates the barrier parameter μ at every step is easily 

implemented in this framework. If the merit function can cause the Maratos  effect ,a second-order 
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correction or a nonmonotone strategy should be implemented. An alternative to using a merit function is 

to employ a filter mechanism to perform the line search. 
 

4.NUMERICAL EXPERIMENTS CONCLUSIONS  

We develop a matlab interior point code that solves nonlinear programming problems with constraints , 

following the framework of Byrd,Hribar and Nocedal [13] the example taken from [1  ] with the same parameter 

value of 
8.01.0,10,01.0 021  

 and the intial x0=-4,s0=λ0=(1,1)T 

The optimal solution is (-3.5108,0.0028e-9) 

5. CONCLUDING REMARKS 

An interior –point algorithm for solution of constrained problems has been proposed and analyzed 
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