
Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 442

MACRO SOFTWARE INTEGRATION IN

OPERATING SYSTEM FOR OFFICE

AUTOMATION

Sudesh Pawar
1
, Yogen Ghodke

2

1
 Student, Department of Computer Engineering, MESCOE, Pune

2
 Student, Department of Computer Engineering, MESCOE, Pune

ABSTRACT

Automation is the creation of tools to automate any task or a group of tasks sequentially without human

intervention. Such automation systems are widely used in the industry in a huge variety of applications, especially

on the production line of machines. Automation is not only limited to performing physical tasks but is also used to

carry out virtual operations. Applications and methods of automation in terms of software are pretty limited. In

current times, employees in corporate sector invest an unnecessarily high amount of time in performing menial

repetitive tasks, thus hampering their work productivity and resulting in a loss to the company. The time saved if

these tasks could be dealt more effectively will help in the growth of overall work execution. After understanding this

issue, the authors decided to work on this issue and this paper is a result of these efforts. The main objective of this

paper is to develop a model which would address the issues present in the current scenario and be viable at the

same time. The main issues while developing such a system was that it could result in heavy usage of computational

resources, but the model proposed solves this issue. The paper combines the principles of sub-domains of Artificial

Intelligence i.e. Cognitive Action Selection, Self-Management, Network Management Systems, Expert Systems to

design the model, thus being competent as a Smart System. This paper focuses on a fundamentally different

approach to software automation in corporate environments in reducing time-complexity, resulting in a paradigm

shift in the conventional approach towards enhancing organizational productivity.

Keywords: Office Automation, Productivity, Macro Tool, Scripts, Visual Coding, Software Modelling, AI.

1. INTRODUCTION

Many corporate organizations today, have very sophisticated networking and database management systems. This

helps them save time, leading to an overall increase in their management productivity. But what all these companies

fail to notice is that, most of their energy and time are spent in performing menial repetitive tasks on their

computers, such as downloading email attachments manually, navigating through the directories to store them in the

dedicated drive and then locating that file later on to forward it to the managers in the higher organizational

hierarchy working on the respective consignment. Another example is manually editing the same settings

repetitively over and over again before printing every file, just because there is an absence of a save settings option.

Imagine the amount of time which will be saved, if these repetitive tasks could be automated with a smart scripted

software which would download attachments, one-click print a file, etc.

There is an increasing need of a single OS-integrated macro tool, which has access to system functions and browser

navigation menus and be able to operate at the backend with nominal yet pertinent computational requirements thus

not hampering the frontend operation of the system and hence the work of the employees.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 443

1.1 What is Software Automation?

The terminology Automation, derived from the Greek word Automaton, means creation of tools and technological

counter-measures in order to control and oversee the production and execution of disparate services without human

intervention [1]. It accomplishes errands which were previously performed by humans. It crosses all domains within

the industry from installation, integration, maintenance to design, procurement, and management. Automation

involves a boundless genus of technologies which span from robotic and expert systems, electro-optics, process-

control, sensors, systems integration and many more.

Software Automation, uses computer software as an applied tool to design systems which will meet the goals of

automation such as expeditious execution, superior management and reduction in time-complexity. In layman’s

terms, software automation can be said to be the ‘Usage of software tools to automate routine tasks.’

1.2 Need for Software Automation.

In recent years the corporate world has witnessed many technological advances, which has increased the urgent

demand for premium quality products and services which can be only supplied by a high level of productivity and

workflow management. Corporate life can be exhaustive. Employees work under condensed deadlines and constant

pressure to meet the client’s ultimatums. But that doesn’t mean that they must exert themselves to bear with the

unnecessary decision-making which thwarts their work focus and results in lackluster focus in key areas. Decisions

such as selecting fonts and sizes before typing in an email and then choosing the proper recipients on your team,

squander a large part of the brain, considering the task to be done is just a message to be passed on.

Now imagine having an “email_script.exe” file on your desktop, double-clicking on which would upshot in a

Pop-up text box, where you type in the subject and your message and just hit enter. The list of the recipients, the text

formatting options, your signature at the bottom etc. all would be pre-programmed by you in your script file, tailored

just the way you want it ; so when you hit enter, it figures out the rest and your task is executed immaculately

without you having to make a lot of choices.

2. BASIC MODEL OF SOFTWARE AUTOMATION

The Following Block Diagram explains the Model of the Automation Software we propose, we shall see the

individual components in detail later on, in 2.1 and 2.2.

Figure -1: Block Diagram of the Software Model

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 444

2.1 User Interface (UI)

The UI of the proposed software model is the platform where the user can record and customize their own scripts.

Initially, it consists of a ‘Record Script’ button, clicking on which minimizes the application and brings the user on

the desktop. Now the user has to navigate through the UI performing the task they want to automate, just as they

would normally do. The application runs in the background recording the user actions in the script, in the form of

system functions accessed from the backend (hence the OS Integration). We call this as “Visual Coding”, where the

user doesn’t really write the code, but it is automatically written through the users actions. Once the user presses the

‘Stop Recording’ hotkey, they will be brought to a screen where the actions they performed while recording would

be shown sequentially as a list. The user can choose to manually edit the script, adding delays, triggers, jumps,

conditional statements and deleting unnecessary actions. Once the script is ready, it can be exported as an executable

file on the desktop to be used for running multiple times. Double clicking the .exe results in the formation of a

parallel desktop which runs in the background [shown in Figure 1] without disturbing the current user experience.

The following table [Table 1] is an example of how the script file perceives user’s actions and automatically writes

code by accessing system functions from the backend.

Table -1: User Actions vs. Recorded Scripts

Opening

Browser
Opening a Website Marking a Checkbox Mouse move

User

Navigation

Double clicks

Chrome icon.

Types gmail.com in

address box.

Marks the “don’t show this

message again” checkbox.

Moves mouse from one corner to

another corner of the screen,

Recorded

Script
run chrome.exe

goto_url

https://www.gmail.com
system_toggle::checkbox_1

mouse.move:(253,357),(570,640)

[in brackets are the screen

co-ordinates in the form of pixels]

2.2 Core Software Model (CSM)

The Core Software Model is a cardinal component that handles the backend system of the entire process. It will have

access to system functions and would carry out all the processes without human intervention. The core will be made

using the utilities of Artificial Intelligence for smart processing and conventional development of the simple

processes, thus being the perfect blend of the conventional meets smart.

The domain of Artificial Intelligence is pretty extensive, but we shall require only the following sub-domains:

 Cognitive Action Selection

 Self-Management & Network Management Systems

 Expert Systems

Even though the main focus of the paper is not on the AI aspect of the model, the paper could not be well-explained

in absence of it.

For the working of the Core, we shall take a look at the example explained in Table 1:

First, the Core shall receive the incoming email address from the user in form of script-code and then it will call the

Expert Systems designed for the process of spam filter which will smart classify the emails and prioritize them. The

useful email attachments will be downloaded and stored in the designated directory with separate folders for each

email address. Then the Core shall give a call to the expert system designed for the process of selection of recipients

which shall read the contents of the mail and determine the correct recipients, forwarding the mail to them. As soon

as the mail is delivered, a return value of 1 shall be returned to the UI Mechanism which will generate an

Acknowledgement Message.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 445

2.2.1 Cognitive Action Selection

Action Selection is a way of characterizing the most basic problem of intelligent systems: ‘What to do next’.

Typically for any one action-selection mechanism, the set of possible action is predefined and fixed. Without usage

of Cognitive Action Selection, our model would not be able to actively select a path ahead in the execution of script.

The nodes in the Core Model have to be equipped enough to make a selection and this is where Cognitive Action

Selection comes into play. We can use either of the symbolic, distributed or dynamic approach for this purpose, but

the system has to execute a fixed script so a dynamic approach fits in pretty well.

2.2.2 Self-Management and Network Management Systems.

Even though Self-Management isn’t exactly a subdomain of Artificial Intelligence, the model emphasizes on this

part because it is essential for the smooth operation of the system. Self-Management is the process by which

computer systems manage their own operation without human intervention. Similarly, Network-Management is

process of managing system networks. Such Self-management systems will pervade next generation of Network

Management Systems. Designing such Self-Management Systems is complex and not exactly under purview of this

paper but there can be simplification in designing by utilization of design patterns such as Model View Controller

which will help in encapsulation of functional concerns. [2]

2.2.3 Expert Systems and its need in Model

Expert Systems are a subdomain of Artificial Intelligence. An expert system is a computerized system that emulates

the ability of decision making in a particular field as found in a human expert in that field.[3] As the expert systems

primarily focus on only one domain, they are extremely useful in designing an automation system. Our entire

backend of the system is nothing but a complex network of small Expert Systems pertaining to respective fields.

3. SCRIPT EXECUTION

Every Automated program has three Phases:

a. Trigger

b. Execution

c. Result

3.1 Trigger

A trigger can be any stimuli, which causes the program to go into the execution phase. These triggers can be added

not only in the beginning but also in the middle of a program. The triggers at the beginning of the script are called as

executional triggers. Some examples of such stimuli are:

a. Waiting for a pixel color to change.

b. Incoming of an email in the inbox.

c. Waiting for the user to press a specific key.

d. Passing of a return value to the feed.

e. System time showing [2/7/2018 _ 9:41:00 AM]

3.2 Execution

Once the program is triggered, it works in the file explorer and browser environments through the backend,

accessing directives, working according to the pre-programmed model script.

3.3 Result

The Result is the only part of the program, visible to the user inside the main UI. It is generated after the successful

execution of a script.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 446

4. INTERNAL WORKING OF THE CORE SOFTWARE MODEL

As seen above in the example, the Core Software Model is an intelligent system which will be the backbone of the

coding scripts which would be generated by the visual coding of the user in the first phase of recording scripts.

Without explaining the internal working, this paper would have been incomplete in a sense.

The Core internal structure can be briefly divided into three parts:

1) Reading Nodes

2) Central Nodes

3) Output Node

4.1 Reading Nodes (or Input Nodes)

The Reading Nodes are the ones which will read the User Inputs from the Visual Code one generates using the UI

Console. The Model will consist of following reading nodes:

 Mouse Node: Will read the Mouse Interactions and convert in Vector form.

 Pixel Node: Reads information related to the pixel such as pixel color hex code, co-ordinates, etc.

 Keyboard Node: Take the Keystrokes input and store in the corresponding ASCII format.

 Browser Node: All Interactions in respect to a Browser would be handled by this node.

 Interface Node: All OS-Interface interactions will be stored in this node.

Every Reading Node shall be connected to different Central Nodes and they shall pass on the information in a form

that the Central Nodes should understand. Basically, the Reading Node acts in a manner similar to the namespace

std in C++. The Namespace links and standardizes the various functions from the user code to the header declaration

and definitions. Similarly, the Reading Nodes will link the visual script generated by the user to the functions stored

in Central Nodes.

4.2 Central Nodes

The Central Nodes are the ones which will actually give call to system functions after getting the information in a

readable manner from the reading nodes. The Node would execute in following manner:

 Get the interpretation of user inputs from the reading nodes.

 Determine the functions that shall be required by computing combined input from the reading

nodes and store them temporarily in a list.

 Generate a Machine level code to access the system functions and call them one by one with the

help of temporarily stored function list.

 After getting the calls executed, perform the required work with the modified data obtained post

system function calling.

 After performing the required work, send the machine level output to the Output Node.

Every Central Node shall be connected to different Output Nodes and they shall pass on the output to the Output

Node. Basically, the Reading Node acts as an amalgamation of an assembler and an algorithmic state machine. The

reason for such a comparison is that it also converts the visual code into a machine level code but also executes the

algorithm as required for smooth operation.

4.3 Output Node

The Output Node is the one which will read the Output obtained from the Central Node and generate a user

understandable version of the same. Functioning of the Output Node is as follows:

1. Fetches the outputs from the various central nodes and store them.

2. Bind the outputs together and obtain the main output.

3. Convert the Main Output from the machine language to the Visual Output.

4. Pass the output to User Interface for display to user.

5. Interface Node: All OS-Interface interactions will be stored in this node.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 447

Thus, we can say that Output Node is basically the user side Interpreter for the entire process and is primarily

focused on obtaining user understandable outputs.

This concept of CSM is illustrated diagrammatically in Figure 2.

Figure -2: Block Diagram of the Core Software Model.

5. SCOPE

The scope of the proposed model extends not only in the areas of corporate management, but also has its roots in the

enhancement of individual productivity. It has a wide array of applications, ranging from cross-application

automation to system error solving. It is a compelling vision which we predict to be mainstream by 2030, where

such systems will be as common as a screenshot is. Also, there will be a thriving ecosystem involving software

engineers writing complicated scripts for companies and earning a buck, creating an entirely new profession. Also,

this concept can be utilized on mobile platforms, making it a much broader sub-domain of automation.

5.1 Applications.

The following is a non-exhaustive list of scenarios where such a proposed model could function as a solution:

1. System Error solving :

Imagine an elderly woman working in a convenience store, encountering an error on her computer.

The solution of her error lies buried deep within her control panel, which she doesn’t know how to

navigate. She could easily search her error online, download the script file corresponding to the solution

and just double click on it, which would magically solve her error without having to get into the control

panel.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 448

2. YouTube ViewBotting :

You can create a YouTube ViewBot to increase the number of likes and views on your YouTube

videos overnight. YouTube increments the view count on a video if it is visited by a new IP Address for the

first time. So the algorithm for the ViewBot would be:

a. Register a new Proxy IP Address.

b. Go to the Video URL.

c. Press the Like button and comment something nice (handled by AI for a variety of compliments).

d. Go to step a.

Here, the like button can give you the approximate count of the number of times the loop was executed.

Overnight, this algorithm can give you thousands of views; enough to launch your video into orbit, so that

it starts showing in people’s recommendations. From there on you can start getting genuine views from real

humans. Similarly, this can also help you earn money through Pay-Per-Click advertising by changing your

IP Address each time before clicking your own Ad. But the authors strongly condemn such actions and

view this in a negative light as it would lead to the collapse of a highly functional ecosystem of cash flow.

3. Automated Investing.

Imagine, your investing strategy involves buying a stock for 5 days at a fixed price and selling it at

a higher rate at another fixed price. You can easily write a script for it so that it works with your

DEMAT account broker, executing your strategy for you without you having to sit in front of your

computer, doing it manually.

4. Automated Form Filling:

Whether you are on a shopping website or on a government site, there are a lot of form details that

you need to fill. The AI would smart-identify the type of text fields from the browser backend by accessing

the website’s source code. Your script will contain information about the details to be filled corresponding

to a particular text field. All you have to do is press the hotkey to trigger the script for automatic form

filling and proceed to use the website without any hassle.

5.2 Misconceptions about Automation.

Myth: The Automation industry would result in massive layoffs and cause mass unemployment.

Fact: Contrary to popular belief, new technologies will create new jobs and change existing ones [4]. Based on

studies, we can expect around 12 percent of US jobs to be automated over the next 10 years, displacing around 19

million workers. But these same studies also predict that these technologies should create 21 million new jobs

maintaining the unemployment figures as they were before.

Myth: Automation always replaces an entire human.

Fact: Automation just takes over repetitive parts of the job. The creative parts are entirely to be handled by humans.

For example, An AI technology can summarize the plot of a movie, but only a human movie critic can experience

the emotions stirred by the movie and pen them down to rate the movie.

Conclusion: So automation isn’t going to take away a teacher’s job; rather, it’ll make the teacher more effective.

6. CONCERNS

While using a script file downloaded from the internet, there might be an attempt to install malicious programs or

steal user data across the internet, which would go unrecognized as the script runs in the background. The solution to

this problem would be, hosting a verified platform (like Google Play Store or App Store) to share scripts, where

experts could go through the code and review it as clean. Unexperienced users might rely on these ratings to remain

safe from threats.

Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396

8875 www.ijariie.com 449

7. CONCLUSION

While researching on this topic, we found that many companies still follow age-old practice of manual execution of

routine tasks. Our paper focuses on this problem and proposes a new Smart Automation System that helps to solve

the issue of over utilization of time in trivial tasks. It brightens, with its futuristic vision, the small light which was

already illuminated with courtesy to other research papers in this field. The theoretical computations clearly show

that our proposed model shall help in saving tremendous time while doing repetitive tasks and avoid unnecessary

complexity while performing error solving due to the merit which lies in the automation system.

8. ACKNOWLEDGEMENT

We would like to thank our First Year Head of Department, Dr. D.S.Adkar [M.Sc., M.Phil., M Ed, Ph.D.] for

encouraging us towards research and Dr. S.B.Sharma [M.Sc., Ph.D.], for imbibing work ethics in us without which

this paper would have never seen the light. We would also like to thank the Department of Computer Engineering,

Modern Education Society’s College of Engineering, Pune, India for their unconditional co-operation.

REFERENCES

[1] What is Automation? By Ken Goldberg, in IEEE Transactions on Automation Science and Engineering Vol. 9

No.1, January 2012

[2] Flexible Self-Management using the Model-View-Controller Pattern, by E. Curry and P. Grace, in IEEE

Software, vol. 25,no. 3,pp. 84-90, May 2008

[3] Introduction to Expert Systems (3 ed.), Addison Wesley, p.2, by Peter Jackson, 1998, ISBN 978-0-201-87686-4.

[4] What to do when Machines do Everything, by Malcolm Frank, Paul Roehrig, Ben Pring (Wiley Publications),

2017

BIOGRAPHIES:

Sudesh Pawar
1

Pursuing BE (Computer Engineering) at MESCOE, Pune (2
nd

 Year of Course as of 2018).

Interests are Artificial Intelligence, Automation, Deep Learning, Human Computer

Interaction, Natural Language Processing, Neural Networks and Web Development.

Yogen Ghodke
2

Pursuing BE (Computer Engineering) at MESCOE, Pune (2
nd

 Year of Course as of 2018).

Interests are Organic Chemistry, Space Sciences, Probability, Statistical Mathematics,

Game Theory, Finance, Machine Learning, Big Data Analytics, and Automation.

