
Vol-2 Issue-2 2016 IJARIIE-ISSN(O)-2395-4396

2033 www.ijariie.com 1809

Maximizing Lifetime Vector of a Wireless

Sensor Networks using Distributive

Progressive Algorithm
Saravanan1, kiranprasath2, snehalatha3, jeyasudha4

1
student, software engineering, SRM University, Tamilnadu, India

2
student, software engineering, SRM University, Tamilnadu, India

3
Assistan professor, software engineering, SRM University, Tamilnadu, India

43
Assistan professor, software engineering, SRM University, Tamilnadu, India

ABSTRACT

Maximizing a operational lifetime of a sensor network is a critical problem in practice. Many prior works define

the network's lifetime as the time before a first sensor in the network runs out of energy. However, when one

sensor dies, the rest of a network can still work, as long as useful data generated by other sensors can reach the

sink. More appropriately, it should maximize the lifetime vector of the network, consisting of the lifetimes of all

sensors, sorted in a ascending order. For this problem, there exists only a centralized algorithm that solves a

series of linear programming problems with high-order complexities. The paper proposes a fully distributed

progressive algorithm which iteratively produces the series of lifetime vectors, each better than the previous

one. Instead of giving the optimal result in one shot after lengthy computation, a proposed distributed algorithm

has a result at any time, and the more time spent gives a better result. We show that when the algorithm

stabilizes, its result produces the maximum lifetime vector. Furthermore, simula tions demonstrate is the

algorithm that able to converge rapidly towards the maximum lifetime vector with low overhead.

Keyword:-DPA,network,sensor,wireless,lifetime vector.

1.INTRODUCTION

What is exactly the lifetime of a sensor network? Many prior works [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10] define the network’s lifetime as the time before the first sensor in the network runs out of

energy, or before the first loss of coverage [11]. This definition simplifies the problem of maximizing

lifetime to a linear programming problem or an NP-hard non-polynomial programming problem if the sink

is allowed to move [10]. However, in reality, the operational lifetime of the network is not limited to the

smallest lifetime of all nodes. When one sensor dies, the rest of the network can still work, as long as useful

data generated by other sensors can still reach the sink. It is not true that, since sensors around the sink

forward others’ data, they will always exhaust their energy first and prevent the rest of the network from

reaching the sink. One can deploy more sensors around the sink, use larger batteries to boost the enrgy level

of the network. Collecting the complete information about the network and uploading the complete

forwarding policies to all nodes require significant amount of transmissions in the network.Thus the enrgy

of the node does not drained easily. to maintain the energy levels of the network,the distributive progressive

algorithm proposed.An appropriate definition for the lifetime of a sen sor network should include the

lifetimes of all sensors that produce useful data. A sensor’s lifetime is the duration from the time when it

begins to generate the first data packet to the time when it generates the last packet that is deliverable to the

sink. The network’s lifetime can be defined as the vector of all sensors’ lifetimes sorted in ascending order,

which is called the lifetime vector. The value of the lifetime vector is determined by the nodes’ packet

forwarding policies that specify how packets are forwarded from the sensors through the network to the

sink. More specifically, for every node, its forwarding policy specifies the proportion of packets that should

be forwarded on each outgoing link towards the sink.Hou et al. [12], [13] define the problem of maximizing

a sensor network’s lifetime as to find the packet forwarding poli-cies for all nodes that collectively produce

the lexicographically largest lifetime vector, called the maximum lifetime vector. In less precise terms, it

first maximizes the smallest lifetime of all nodes, then maximizes the second smallest lifetime of all nodes,

and so on. Hou et al. show that this problem can modeled as a series of linear programming (LP) problems.

Vol-2 Issue-2 2016 IJARIIE-ISSN(O)-2395-4396

2033 www.ijariie.com 1810

After solving the LP problems, the sink uploads the optimal packet forwarding policies to the sensors.

Based on its forwarding policy, each sensor forward its packets. Such a solution is however a centralized

one. It requires solving O(|N |) LP problems of size O(|E|), where |N | is the number of sensors in the

network, |E| is the number of links, and LP has high-order polynomial complexity. The computation

overhead can be prohibitively high for large sensor networks that need to be operational soon after

deployment. Collecting the complete information about the network and uploading the complete forwarding

policies to all nodes require significant amount of transmissions in the network, particularly for nodes

around the sink. To avoid these problems, a distributed algorithm that spreads the overhead evenly on all

nodes becomes important.This paper presents the first distributed solution for the problem of maximizing

the lifetime vector of a sensor network. Our strategy is to design a distributed progressive algorithm that

works in a series of iterations, each producing a result (in our case, a lifetime vector and its corresponding

forwarding policies) that is better than the previous one. The sequence of results approaches to the optimal

solution. A distributed progressive algorithm is practically attractive because a result is available at any time

and is getting better as more time is spent. We show that when the algorithm stabilizes, its result produces

the maximum lifetime vector. We have performed thousands of simulation runs on rando m networks of

various sizes, and compared with Hou’s centralized algorithm as well as other related algorithms. The

results demonstrate that our algorithm rapidly converges to the maximum lifetime vector and its overhead is

small. For networks of thousands of nodes, it produces near optimal results in 10 to 30 iterations — one

iteration requires each node to transmit two small control messages. The algorithm scales well as its

overhead increases slowly with respect to network size. When used as a centralized algorithm, it is two to

three orders of magnitude faster than Hou’s linear programming solution for random networks of thousands

of nodes; the performance gap increases for larger networks. We also compare the proposed algorithm with

other existing algorithms that maximize the smallest sensor lifetime in the network or perform minimum-

power routing. DPA pro-duces much better lifetime vector.

1.1 NETWORK MODEL AND PROBLEM DEFINITION

Let N be the set of sensor nodes, among which the subset S that generate new data are called data

sources, which may be the aggregation nodes representing local clusters [12], [13]. Let gi, i ∈ N , be the source

rate at which node i generates new data packets . gi > 0 if i ∈ S; gi = 0 if i _∈S. We assume that the source rates

are set low enough to not cause congestion in the network. The sink may consist of multiple geographically

dispersed base stations. Assume the base stations are externally connected to a data collector. It makes no

difference which base station a data packet is routed to.Two nodes are neighbors if they can receive packets

from each other (to support DATA/ACK exchange). There may be multiple routing paths from each node to the

sink. Let Di be the set of neighbors that node i use as the next hops to the sink. They are called downstream

neighbors of node i. ∀j ∈ Di, (i, j) is called an outgoing link of i. Let Ui be the set of upstream neighbors, which

use i as the next hop on their routing paths to the sink. ∀k ∈ Ui, (k, i) is called an incoming link of i. If i is a

downstream neighbor of k , then k must be an upstream neighbor of i. Let E = {(i, j) | ∀i ∈ N, j ∈ Di}. We call the

graph consisting of all these links as the routing graph of the sensor network, which contains all routing paths

from data sources to the sink.

1.2 Volume Schedule
The volume v(i, j) of a link (i, j) is defined as the number of packets transmitted on the link over the

lifetime

of the sensor network. The source volume v(i) of a node i is defined as the number of new data packets

generated by i. All link volumes and source volumes together form a volume schedule. There are many possible

volume schedules, but not all of them can be actually realized. A volume schedule is feasible only if it satisfies

the following energy and volume conservation constraints. Let ei be the energy available at node i. Let α be the

amount of energy that a node spends on receiving a data packet from an upstream neighbor, βi be the amount of

energy that node i spends on producing a new data packet, γi be the amount of energy that node i spends on

sending a packet. The energy constraint is given below.
_

 α × v(k, i) + βi × v(i) +
_

 γi × v(i, j) ≤ ei, ∀i ∈ N
k∈Ui j∈Di

 (1)
We say a node i is exhausted if

_
 α × v(k, i) + βi × v(i) +

_
 γi × v(i, j) = ei.

k∈Ui j∈Di

Vol-2 Issue-2 2016 IJARIIE-ISSN(O)-2395-4396

2033 www.ijariie.com 1811

The volume conservation constraint depends on the application model. If the application requires raw data to be

delivered from sources to the sink, then the number of packets sent by a node is equal to the number it receives,

i.e.,

_ v(i, j) = v(i) +
_

 v(k, i), ∀i ∈ N.

(2)
j∈Di k∈Ui

If it requires periodic measurement of min/max/avg among readings from sources that have not exhausted yet

and remain reachable to the sink, then a node will send a packet for each set of packets received from its

upstream neighbors or generated locally. The constraint becomes

2.NECESSARY AND SUFFICIENT CONDITIONS FOR MAXIMIZING LIFETIME

VECTOR

This section establishes the theoretical foundation of our distributed algorithm for maximizing the lifetime

vector.The volume of a (directed) path is defined as the minimum volume of the links on the path. A path in the

routing graph

s w
u

link with zero volume

z

p2
p

3
link with non-z e ro volume

p1

 path

k x source node

 i non-source node

 exhausted node

BS base station

Fig. 1: There is no exhausted node on P1 or P2; nodes s and w are unrestricted feeding sources of i. There is an

exhausted node x on P3; node u is a restricted feeding source of i. There is no forwarding path from z to i; node z

is a potential source of i. is called a forwarding path if its volume is greater than zero. Otherwise, it is called a

non-forwarding path.Node s ∈ S is a feeding source of node i ∈ N if there is a forwarding path from s to i.

Furthermore, node s is a restricted feeding source of node i if there is an exhausted node on every forwarding

path from s to i. Node s is an unrestricted feeding source of node i if there is no exhausted node on at least one

forwarding path from s to i, where the path referred in this definition includes s but excludes i. Node s is a

potential source of node i if it is not a feeding source of i, but there exists a non-forwarding path from s to i, and

the path has no exhausted node.We will establish the necessary and sufficient conditions for maximizing the

lifetime vector in a theorem below. Below we explain a basic technique used in the proof, called volume shift.

Understanding this technique will also help one to understand the design of the algorithm.Consider the routing

graph in Fig. 1. Suppose s and w are two unrestricted feeding sources of node i. Let P1 and P2 be two forwarding

paths that do not have any exhausted node. We show that the lifetime of an unrestricted feeding source can be

increased at the expense of the lifetime of another. To do so, we simply decrease the source volume of s, then

decrease the volumes on the links of P1, increase the source volume of w, and finally increase the volumes on

the links of P2, all by the same tiny amount, which should be small enough such that its addition on P2 does not

violate the energy constraint. The above operation is called a volume shift from s to w with respect to i. It is easy

to see that, after volume shift, the volume schedule remains feasible and the lifetime of s is decreased, the

lifetime of w is increased, while the lifetimes of all other sources remain unchanged. It is obvio us that, to

improve the lifetime vector, we shall always perform a volume shift from a node with a larger lifetime to a node

with a smaller lifetime.Not only can a volume shift be performed between two unrestricted feeding sources, but

also it can be performed from a restricted feeding source u to an unrestricted feeding source s, or from an

unrestricted feeding source s to a potential source z, but not the other way around — more specifically, i) a

volume shift cannot be performed from an unrestricted feeding source s to a restricted feeding source u because

we cannot add any additional volume to P3 that has an exhausted node x;volume shift cannot be performed from

a potential source z to an unrestricted feed source s because the volume of any path from z to i is zero and thus

nothing can be shifted out.

Theorem 1: A feasible volume schedule produces the maxi-mum lifetime vector if and only if the following

conditions are met:

1) There is an exhausted node on every path from a source to the sink.

Vol-2 Issue-2 2016 IJARIIE-ISSN(O)-2395-4396

2033 www.ijariie.com 1812

2) All unrestricted feeding sources of a node must have the same lifetime, which should be no less than the

lifetimes of the restricted feeding sources of the same node, and no greater than the lifetimes of the

potential sources of the same node.

The proof is omitted due to space limitation. The above theorem gives us some guideline for designing a

distributed algorithm that generates a volume schedule to maximize the lifetime vector. Below we give intuitive

interpretation.Based on the first condition, data sources should aggressively set their source volumes to the

highest values that their paths to the sink allow.The lifetime of a source s, which is v(s)/gs, can be inter-preted as

the average volume assigned to each unit of rate. The second condition requires that each unit of rate received

by a node i from an unrestricted feeding source deserves the same amount of volume allocation. In other words,

for unrestricted feeding sources, node i should allocate volumes in proportion to their rates (that i receives and

forwards). However, each unit of rate from a restricted feeding source (which encounters an exhausted node on

its forwarding path) may receive less volume allocation at node i. Moreover, a source should always direct its

packets to paths that have highest volume allocation per unit of rate.

2.2.DISTRIBUTED PROGRESSIVE ALGORITHM

Generate data packets and deliver them to the sink, a distributed progressive algorithm (DPA) is

executed to produce a volume schedule, based on which the data packets will be forwarded. on the second

condition in Theorem 1. From the volume-bound distribution, it sets a volume schedule, based on which it will

in turn derive a new rate schedule. This completes the first iteration of the algorithm. As shown in Fig. 2, in each

subsequent iteration, DPA repeats the above computation of a new volume-bound distribution (based on the rate

schedule from the previous iteration), then a new volume schedule, and finally a new rate schedule. Each

iteration produces a better volume schedule whose lifetime vector is larger than the previous one.The rate

schedule, volume-bound distribution, and volume schedule are stored and computed in a fully -distributed way.

Each node only maintains the rates, volume bounds, and volumes of its adjacent links with a space complexity

of O(|Di|+|Ui|). Because each directed link is shared by a pair of upstream-downstream nodes. Some properties

of the link will be set by the upstream node and then sent to the downstream node, while other properties will be

set by the downstream node and then sent to the upstream node. Details are given below.No de i will set its

outgoing rates, r(i, j), j ∈ Di, by distributing the total incoming rate among the outgoing links. It will learn the

incoming rates, r(k, i), k ∈ Ui, from upstream neighbors k who set those rates. (We want to stress that the link

rates here are auxiliary variables used to facilitate the computation of volumes. They have nothing to do with the

actual data-packet rates on the links at the time when DPA is executed. In fact, DPA can be executed at the

beginning of the deployment before any data packets are transmitted.)Node i will set its outgoing volumes v(i, j)

by distributing the total incoming volume among the outgoing links. It will learn the incoming volumes v(k, i)

from upstream neighbors k who set those volumes.Node i will set its incoming volume bounds b(k, i) by dis-

tributing its forwarding capacity among the incoming links. It will learn the outgoing volume bounds b(i, j) from

downstream neighbors j who set those bounds.In the rest of the section, we will describe the details of DPA,

which consists of Initialization phase and iterative phase with each iteration having two steps. The first step

computes volume bounds based on link rates. The second step determines link volu mes from volume bounds

and then computes new links rates, which sets the stage for the next iteration

3.SIMULATION

The first simulation studies how quickly DPA converges its lifetime vector to the maximum lifetime vector

(MLV), which is computed numerically based on Hou’s centralized algorithm [13]. Consider the lifetime vector

Vx produced by DPA after the xth iteration. We measure how much Vx deviates from MLV by the following two

metrics. Let tx(s) be the lifetime of source s in Vx. Let t∗(s) be the lifetime of s in MLV. The max deviation of Vx

is defined as the avg/max deviations of lifetime vectors pro-duced by DPA on 500-node sensor networks. The

deviations drop quickly to an insignificant level after a small number of iterations. For example, the avg/max

deviations are merely 0.066 and 0.013 respectively after 20 iterations — that means, in the worse case, the

lifetime of any source deviates from its optimal value by no more than 6.6%, and on the average case, the

lifetime of a source deviates from the optimal by 1.3%.

3.1.SCALABILITY OF DPA

We evaluate the scalability of DPA on random networks of 500 to 3,000 nodes (with 20% being

sources). We set a target (avg or max) deviation to be 0.025, 0.05, 0.075 or 0.1. We then count the number of

iterations that DPA has to perform in order to produce a lifetime vector whose deviation is bounded by the target

value. The simulation results are presented in Fig. 5. It shows that the overhead for DPA to satisfy a target

Vol-2 Issue-2 2016 IJARIIE-ISSN(O)-2395-4396

2033 www.ijariie.com 1813

deviation, which is measured by the number of iterations , grows slowly with the network size. Recall that a node

sends at most 2 smalL control packets in each iteration. Even for a network of 3,000 nodes , only 12 iterations

are needed to achieve an avg deviation of 5%, and 32 iterations are needed for a max deviation of 5%.

4.CONCLUSION

We have proposed a distributed progressive algorithm for maximizing the lifetime vector in a wireless sensor

network, the first algorithm of its kind for this problem. The design of the algorithm was based on the necessary

and sufficient conditions that we have proved for producing the maximum lifetime vector. Simulations are

performed to demonstrate the performance of the algorithm

5. REFERENCES

[1] D. Luo, X. Zhu, X. Wu, and G. Chen, ―Maximizing lifetime for the shortest path aggregation tree in

wireless sensor networks,‖ in Proc. IEEE INFOCOM, Apr. 2011, pp. 1566–1574.

[2] H. Wang, N. Agoulmine, M. Ma, and Y. Jin, ―Network lifetime optimization in wireless sensor

networks,‖ IEEE J. Sel. Areas Commun., vol. 28, no. 7, pp. 1127–1137, Sep. 2010.

[3] Y. Yun and Y. Xia, ―Maximizing the lifetime of wireless sensor networks with mobile sink in

delay-tolerant applications,‖ IEEE Trans . Mobile Compu., vol. 9, no. 9, pp. 1308–1318, Sep. 2010.

[4] G. Zussman and A. Segall, ―Energy efficient routing in ad hoc disaster recovery networks,‖ in Proc.

IEEE INFOCOM, 2003, vol. 1, pp. 682–691.

[5] A. Sankar and Z. Liu, ―Maximum lifetime routing in wireless ad-hoc networks,‖ in Proc. IEEE

INFOCOM, 2004, vol. 2, pp. 1089–1097

.

