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ABSTRACT 

Maximizing a operational lifetime of a sensor network is a critical problem in practice. Many prior works define 

the network's lifetime as the time before a first sensor in the network runs out of energy. However, when one 

sensor dies, the rest of a network can still work, as long as useful data generated by other sensors can reach the 

sink. More appropriately, it should maximize the lifetime vector of the network, consisting of the lifetimes of all 

sensors, sorted in a ascending order. For this problem, there exists only a centralized algorithm that solves a 

series of linear programming problems with high-order complexities. The paper proposes a fully distributed 

progressive algorithm which iteratively produces the series of lifetime vectors, each better than the previous 

one. Instead of giving the optimal result in one shot after lengthy computation, a proposed distributed algorithm 

has a result at any time, and the more time spent gives a better result. We show that when the algorithm 

stabilizes, its result produces the maximum lifetime vector. Furthermore, simula tions demonstrate is the 

algorithm that able to converge rapidly towards the maximum lifetime vector with low overhead.  

Keyword:-DPA,network,sensor,wireless,lifetime vector. 

 

1.INTRODUCTION 

What is exactly the lifetime of a sensor network? Many prior works [1], [2], [3], [4], [5], [6], [7], 

[8], [9], [10] define the network’s lifetime as the time before the first sensor in the network runs out of 

energy, or before the first loss of coverage [11]. This definition simplifies the problem of maximizing 

lifetime to a linear programming problem or an NP-hard non-polynomial programming problem if the sink 

is allowed to move [10]. However, in reality, the operational lifetime of the network is not limited to the 

smallest lifetime of all nodes. When one sensor dies, the rest of the network can still work, as long as useful 

data generated by other sensors can still reach the sink. It is not true that, since sensors around the sink 

forward others’ data, they will always exhaust their energy first and prevent the rest of the network from 

reaching the sink. One can deploy more sensors around the sink, use larger batteries to boost the enrgy level 

of the network. Collecting the complete information about the network and uploading the complete 

forwarding policies to all nodes  require significant amount of transmissions in the network.Thus the enrgy 

of the node does not drained easily. to maintain the energy levels of the network,the distributive progressive 

algorithm proposed.An appropriate definition for the lifetime of a sen sor network should include the 

lifetimes of all sensors that produce useful data. A sensor’s lifetime is the duration from the time when it 

begins to generate the first data packet to the time when it generates the last packet that is deliverable to the 

sink. The network’s lifetime can be defined as the vector of all sensors’ lifetimes sorted in ascending order, 

which is called the lifetime vector. The value of the lifetime vector is determined by the  nodes’ packet 

forwarding policies that specify how packets are forwarded from the sensors through the network to the 

sink. More specifically, for every node, its forwarding policy specifies the proportion of packets that should 

be forwarded on each outgoing link towards the sink.Hou et al. [12], [13] define the problem of maximizing 

a sensor network’s lifetime as to find the packet forwarding poli-cies for all nodes that collectively produce 

the lexicographically largest lifetime vector, called the maximum lifetime vector. In less precise terms, it 

first maximizes the smallest lifetime of all nodes, then maximizes the second smallest lifetime of all nodes, 

and so on. Hou et al. show that this problem can modeled as a series of linear programming (LP) problems. 
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After solving the LP problems, the sink uploads the optimal packet forwarding policies to the sensors. 

Based on its forwarding policy, each sensor forward its packets. Such a solution is however a centralized 

one. It requires solving O(|N |) LP problems of size O(|E|), where |N | is the number of sensors in the 

network, |E| is the number of links, and LP has high-order polynomial complexity. The computation 

overhead can be prohibitively high for large sensor networks that need to be operational soon after 

deployment. Collecting the complete information about the network and uploading the complete forwarding 

policies to all nodes require significant amount of transmissions in the network, particularly for nodes 

around the sink. To avoid these problems, a distributed algorithm that spreads  the overhead evenly on all 

nodes becomes important.This paper presents the first distributed solution for the problem of maximizing 

the lifetime vector of a sensor network. Our strategy is to design a distributed progressive algorithm that 

works in a series of iterations, each producing a result (in our case, a lifetime vector and its corresponding 

forwarding policies) that is better than the previous one. The sequence of results approaches to the optimal 

solution. A distributed progressive algorithm is practically attractive because a result is available at any time 

and is getting better as more time is spent. We show that when the algorithm stabilizes, its result produces 

the maximum lifetime vector. We have performed thousands of simulation runs on rando m networks of 

various sizes, and compared with Hou’s centralized algorithm as well as other related algorithms. The 

results demonstrate that our algorithm rapidly converges to the maximum lifetime vector and its overhead is 

small. For networks of thousands  of nodes, it produces near optimal results in 10 to 30 iterations — one 

iteration requires each node to transmit two small control messages. The algorithm scales well as its 

overhead increases slowly with respect to network size. When used as a centralized algorithm, it is two to 

three orders of magnitude faster than Hou’s linear programming solution for random networks of thousands 

of nodes; the performance gap increases for larger networks. We also compare the proposed algorithm with 

other existing algorithms that maximize the smallest sensor lifetime in the network or perform minimum-

power routing. DPA pro-duces much better lifetime vector. 
 

1.1 NETWORK MODEL AND PROBLEM DEFINITION 

 

Let N be the set of sensor nodes, among which the subset S that generate new data are called data 

sources, which may be the aggregation nodes representing local clusters [12], [13]. Let gi, i ∈ N , be the source 

rate at which node i generates new data packets . gi > 0 if i ∈ S; gi = 0 if i _∈S. We assume that the source rates 

are set low enough to not cause congestion in the network. The sink may consist of multiple geographically 

dispersed base stations. Assume the base stations are externally connected to a data collector. It makes no 

difference which base station a data packet is routed to.Two nodes are neighbors if they can receive packets 

from each other (to support DATA/ACK exchange). There may be multiple routing paths from each node to the 

sink. Let Di be the set of neighbors that node i use as the next hops to the sink. They are called downstream 

neighbors of node i. ∀j ∈ Di, (i, j) is called an outgoing link of i. Let Ui be the set of upstream neighbors, which 

use i as the next hop on their routing paths to the sink. ∀k  ∈ Ui, (k, i) is called an incoming link of i. If i is a 

downstream neighbor of k , then k  must be an upstream neighbor of i. Let E = {(i, j) | ∀i ∈ N, j ∈ Di}. We call the 

graph consisting of all these links as the routing graph of the sensor network, which contains all routing paths  

from data sources to the sink. 

 

1.2 Volume Schedule 
The volume v(i, j) of a link (i, j) is defined as the number of packets transmitted on the link over the 

lifetime 

of the sensor network. The source volume v(i) of a node i is defined as the number of new data packets 

generated by i. All link volumes and source volumes together form a volume schedule. There are many possible 

volume schedules, but not all of them can be actually realized. A volume schedule is  feasible only if it satisfies 

the following energy and volume conservation constraints. Let ei be the energy available at node i. Let α be the 

amount of energy that a node spends on receiving a data packet from an upstream neighbor, βi be the amount of 

energy that node i spends on producing a new data packet, γi be the amount of energy that node i spends on 

sending a packet. The energy constraint is given below. 
_

 α × v(k, i) + βi × v(i) + 
_

 γi × v(i, j) ≤ ei,   ∀i ∈ N 
k∈Ui j∈Di 

    (1) 
We say a node i is exhausted if 

_
 α × v(k, i) + βi × v(i) + 

_
 γi × v(i, j) = ei. 

k∈Ui j∈Di 
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The volume conservation constraint depends on the application model. If the application requires raw data to be 

delivered from sources to the sink, then the number of packets sent by a node is equal to the number it receives, 

i.e., 

_ v(i, j) = v(i) + 
_

 v(k, i),   ∀i ∈ N. 
                                     

(2) 
j∈Di k∈Ui  

If it requires periodic measurement of min/max/avg among readings from sources that have not exhausted yet 

and remain reachable to the sink, then a node will send a packet for each set of packets received from its 

upstream neighbors or generated locally. The constraint becomes  

 
2.NECESSARY AND SUFFICIENT CONDITIONS FOR MAXIMIZING LIFETIME        

VECTOR 

 
This section establishes the theoretical foundation of our distributed algorithm for maximizing the lifetime 

vector.The volume of a (directed) path is defined as the minimum volume of the links on the path. A path in the 

routing graph  
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Fig. 1: There is no exhausted node on P1 or P2; nodes s and w are unrestricted feeding sources of i. There is an 

exhausted node x on P3; node u is a restricted feeding source of i. There is no forwarding path from z to i; node z 

is a potential source of i. is called a forwarding path if its volume is greater than zero. Otherwise, it is called a 

non-forwarding path.Node s ∈ S is a feeding source of node i ∈ N if there is a forwarding path from s to i. 

Furthermore, node s is a restricted feeding source of node i if there is an exhausted node on every forwarding 

path from s to i. Node s is an unrestricted feeding source of node i if there is no exhausted node on at least one 

forwarding path from s to i, where the path referred in this definition includes s but excludes i. Node s is a 

potential source of node i if it is not a feeding source of i, but there exists a non-forwarding path from s to i, and 

the path has no exhausted node.We will establish the necessary and sufficient conditions for maximizing the 

lifetime vector in a theorem below. Below we explain a basic technique used in the proof, called volume shift. 

Understanding this technique will also help one to understand the design of the algorithm.Consider the routing 

graph in Fig. 1. Suppose s and w are two unrestricted feeding sources of node i. Let P1 and P2 be two forwarding 

paths that do not have any exhausted node. We show that the lifetime of an unrestricted feeding source can be 

increased at the expense of the lifetime of another. To do so, we simply decrease the source volume of s, then 

decrease the volumes on the links of P1, increase the source volume of w, and finally increase the volumes on 

the links of P2, all by the same tiny amount, which should be small enough such that its addition on P2 does not 

violate the energy constraint. The above operation is called a volume shift from s to w with respect to i. It is easy 

to see that, after volume shift, the volume schedule  remains feasible and the lifetime of s is decreased, the 

lifetime of w is increased, while the lifetimes of all other sources remain unchanged. It is obvio us that, to 

improve the lifetime vector, we shall always perform a volume shift from a node with a larger lifetime to a node 

with a smaller lifetime.Not only can a volume shift be performed between two unrestricted feeding sources, but 

also it can be performed from a restricted feeding source u to an unrestricted feeding source s, or from an 

unrestricted feeding source s to a potential source z, but not the other way around — more specifically, i) a 

volume shift cannot be performed from an unrestricted feeding source s to a restricted feeding source u because 

we cannot add any additional volume to P3 that has an exhausted node x;volume shift cannot be performed from 

a potential source z to an unrestricted feed source s because the volume of any path  from z to i is zero and thus 

nothing can be shifted out. 

 
Theorem 1: A feasible volume schedule produces the maxi-mum lifetime vector if and only if the following 

conditions are met: 

 

1) There is an exhausted node on every path from a source to the sink.  
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2) All unrestricted feeding sources of a node must have the same lifetime, which should be no less than the 

lifetimes of the restricted feeding sources of the same node, and no greater than the lifetimes of the 

potential sources of the same node.  

 

The proof is omitted due to space limitation. The above theorem gives us some guideline for designing a 

distributed algorithm that generates a volume schedule to maximize the lifetime vector. Below we give intuitive 

interpretation.Based on the first condition, data sources should aggressively set their source volumes to the 

highest values that their paths to the sink allow.The lifetime of a source s, which is v(s)/gs, can be inter-preted as 

the average volume assigned to each unit of rate. The second condition requires that each unit of rate received 

by a node i from an unrestricted feeding source deserves the same amount of volume allocation. In other words, 

for unrestricted feeding sources, node i should allocate volumes in proportion to their rates (that i receives and 

forwards). However, each unit of rate from a restricted feeding source (which encounters an exhausted node on 

its forwarding path) may receive less volume allocation at node i. Moreover, a source should always direct its 

packets to paths that have highest volume allocation per unit of rate. 

 

2.2.DISTRIBUTED PROGRESSIVE ALGORITHM 

 

Generate data packets and deliver them to the sink, a distributed progressive algorithm (DPA) is 

executed to produce a volume schedule, based on which the data packets will be forwarded. on the second 

condition in Theorem 1. From the volume-bound distribution, it sets a volume schedule, based on which it will 

in turn derive a new rate schedule. This completes the first iteration of the algorithm. As shown in Fig. 2, in each 

subsequent iteration, DPA repeats the above computation of a new volume-bound distribution (based on the rate 

schedule from the previous iteration), then a new volume schedule, and finally a new rate schedule. Each 

iteration produces a better volume schedule whose lifetime vector is larger than the previous one.The rate 

schedule, volume-bound distribution, and volume schedule are stored and computed in a fully -distributed way. 

Each node only maintains the rates, volume bounds, and volumes of its adjacent links with a space complexity 

of O(|Di|+|Ui|). Because each directed link is shared by a pair of upstream-downstream nodes. Some properties 

of the link will be set by the upstream node and then sent to the downstream node, while other properties will be 

set by the downstream node and then sent to the upstream node. Details are given below.No de i will set its 

outgoing rates, r(i, j), j ∈ Di, by distributing the total incoming rate among the outgoing links. It will learn the 

incoming rates, r(k, i), k  ∈ Ui, from upstream neighbors k  who set those rates. (We want to stress that the link 

rates here are auxiliary variables used to facilitate the computation of volumes. They have nothing to do with the 

actual data-packet rates on the links at the time when DPA is executed. In fact, DPA can be executed at the 

beginning of the deployment before any data packets are transmitted.)Node i will set its outgoing volumes v(i, j) 

by distributing the total incoming volume among the outgoing links. It will learn the incoming volumes v(k, i) 

from upstream neighbors k  who set those volumes.Node i will set its incoming volume bounds  b(k, i) by dis-

tributing its forwarding capacity among the incoming links. It will learn the outgoing volume bounds  b(i, j) from 

downstream neighbors j who set those bounds.In the rest of the section, we will describe the details of DPA, 

which consists of Initialization phase and iterative phase with each iteration having two steps. The first step 

computes volume bounds based on link rates. The second step determines link volu mes from volume bounds 

and then computes new links rates, which sets the stage for the next iteration  

 

3.SIMULATION 
 

The first simulation studies how quickly DPA converges its lifetime vector to the maximum lifetime vector 

(MLV), which is computed numerically based on Hou’s centralized algorithm [13]. Consider the lifetime vector 

Vx produced by DPA after the xth iteration. We measure how much Vx deviates from MLV by the following two 

metrics. Let tx(s) be the lifetime of source s in Vx. Let t∗(s) be the lifetime of s in MLV. The max deviation of Vx 

is defined as the avg/max deviations of lifetime vectors pro-duced by DPA on 500-node sensor networks. The 

deviations drop quickly to an insignificant level after a small number of iterations. For example, the avg/max 

deviations are merely 0.066 and 0.013 respectively after 20 iterations — that means, in the worse case, the 

lifetime of any source deviates from its optimal value by no more than 6.6%, and on the average case, the 

lifetime of a source deviates from the optimal by 1.3%. 

 

3.1.SCALABILITY OF DPA 

  
We evaluate the scalability of DPA on random networks of 500 to 3,000 nodes (with 20% being 

sources). We set a target (avg or max) deviation to be 0.025, 0.05, 0.075 or 0.1. We then count the number of 

iterations that DPA has to perform in order to produce a lifetime vector whose deviation is bounded by the target 

value. The simulation results are presented in Fig. 5. It  shows that the overhead for DPA to satisfy a target 
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deviation, which is measured by the number of iterations , grows slowly with the network size. Recall that a node 

sends at most 2 smalL control packets in each iteration. Even for a network of 3,000 nodes , only 12 iterations 

are needed to achieve an avg deviation of 5%, and 32 iterations are needed for a max deviation of 5%. 

 

4.CONCLUSION 

 
We have proposed a distributed progressive algorithm for maximizing the lifetime vector in a wireless sensor 

network, the first algorithm of its kind for this problem. The design of the algorithm was based on the necessary 

and sufficient conditions that we have proved for producing the maximum lifetime vector. Simulations are 

performed to demonstrate the performance of the algorithm 

 

5. REFERENCES 

 
[1] D. Luo, X. Zhu, X. Wu, and G. Chen, ―Maximizing lifetime for the shortest path aggregation tree in 

wireless sensor networks,‖ in Proc. IEEE INFOCOM, Apr. 2011, pp. 1566–1574. 

[2] H. Wang, N. Agoulmine, M. Ma, and Y. Jin, ―Network lifetime optimization in wireless sensor 

networks,‖ IEEE J. Sel. Areas Commun., vol. 28, no. 7, pp. 1127–1137, Sep. 2010. 

[3] Y. Yun and Y. Xia, ―Maximizing the lifetime of wireless sensor networks with mobile sink in 

delay-tolerant applications,‖ IEEE Trans . Mobile Compu., vol. 9, no. 9, pp. 1308–1318, Sep. 2010. 

[4] G. Zussman and A. Segall, ―Energy efficient routing in ad hoc disaster recovery networks,‖ in Proc. 

IEEE INFOCOM, 2003, vol. 1, pp. 682–691. 

[5] A. Sankar and Z. Liu, ―Maximum lifetime routing in wireless ad-hoc networks,‖ in Proc. IEEE 

INFOCOM, 2004, vol. 2, pp. 1089–1097 

 
 

 

. 

 

 
 

 
 

 

 

 

 

 
 
 


