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ABSTRACT 
The ARIMA (Autoregressive Integrated Moving Average) was applied to the series of SPI -1. The results of the 

evaluation of the model showed good agreement between observations and forecasts , as was also confirmed by the 

values of some performance indices and the results seem to be better for better SPI Serial and this may be due to 

increase the filter length reduces the effective noise .  
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1. INTRODUCTION 

Climatic models (stochastic or deterministic)   are used for various purposes, from the study of time dynamics and 

climatic systems for the projections of the future climate. The goal of this section is to propose a statistical model 

based on sets of SPI-1 and to study the evolution of the climate in the south of Madagascar. The index SPI was used 

as an indicator of drought for forecasting because of its advantages over other drought indices. The capacity of the 

ARIMA Model in predicting drought has been studied using the Box and Jenkins method.    

2. METHODOLOGY 

2.1. ARIMA time series modeling  
              

ARIMA models allow three types of time processes to be combined: autoregressive processes (AR), moving average 

processes (MA) and integrated processes (I). In the general case, an ARIMA model (p, d, q) is a combination of 

these three types of process. The p, d, q and   designing respectively the order of the autoregressive process, the 

order of integration and the order of the moving average. It is by the Box & Jenkins method to build a model 

restoring as best as possible the behavior of a time series following three stages: identification, estimation and 

diagnosis.   

2.1.1. Autoregressive processes  

A process (𝑋𝑡)  is said to be autoregressive of order p, AR (p),   if the present observation 𝑋𝑡is generated by a 

weighted average of the past observations up to the p- thperiod in the following form: 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡 
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That we can also write in a condensed form:  

𝑋𝑡 = ∑ 𝛼𝑖𝑋𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

          (1) 

𝛼𝑖Are real coefficients fixed with the condition?𝛼𝑝 ≠ 0 

𝜀𝑡Is a white noise ie they 𝜀𝑡are iidaccording to a law 𝑵(𝟎, 𝝈𝟐) 

2.1.2. Moving average processes 

In a (𝑋𝑡)  moving average process of order q, each observation𝑋𝑡  is generated by a weighted average of hazards up 

to the q- thperiod in the past. 

∀𝑡 ∈ ℤ ∶  𝑋𝑡 = 𝜀𝑡 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

 , 𝑜ù(𝜃1, … , 𝜃𝑞) ∈ ℝ𝑞𝑒𝑡𝜃𝑞 ≠ 0 

Generally, we use the following notation: 

𝑋𝑡 = Θ(𝐿)𝜀𝑡,   𝑜ùΘ(𝐿) = 𝐼 + ∑ 𝜃𝑖𝐿𝑖

𝑞

𝑖=1

 

An MA process is always stationary. 

2.1.3. ARMA processes (p, q) 

ARMA models are representative of processes generated by a combination of past values and past errors. 

𝑋𝑡 − 𝛼1𝑋𝑡−1 − 𝛼2𝑋𝑡−2 − ⋯ − 𝛼𝑝𝑋𝑡−𝑝 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

We can also write the ARMA model (p, q) in the form: 

𝛼(𝐿)𝑋𝑡 = Θ(𝐿)𝜀𝑡 

Where L is the shift operator and 𝜀𝑡is the white noise process. 

2.1.4. ARIMA processes (p, d, q) 

A process 𝑋𝑡is called ARIMA (p, d, and q), where p, d and q   are positive or zero if the process (1 − 𝐿)𝑑𝑋𝑡is a 

stationary ARMA process (p, q).ARIMA processes are useful for processes that have positive and slowly decreasing 

correlations because this property of autocorrelations can be a sign of a trend in the series. 

𝛼(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = Θ(𝐿)𝜀𝑡 

The ARIMA process (0, 1, and 0) is called Random Walk Model. It is often used to analyze the efficiency of 

financial markets.  

3. RESULTS  

 
3.1. Drought analysis by SPI modeling              

The SPI was developed with the aim of defining and monitoring droughts. The global climate change in recent years 

is likely to increase the frequency of droughts. Although much of the time we live is brief and short-lived, drought is 

a more gradual phenomenon, affecting an area slowly and tightening its grip over time. In severe cases, drought can 

last for many years, and can have devastating effects on agriculture and water supply. It is very difficult to determine 

when a drought begins or ends. A drought can be short, lasting a few months, or it can persist for years before 

weather conditions return to normal. Drought forecasts play an important role in mitigating the effects of drought on 
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water resource systems. Traditionally, statistical models have been used for hydrological forecasting of droughts as a 

function of time in the series methods. One of the basic shortcomings in mitigating the effects of drought is the 

inability to predict drought conditions reasonably well in advance by either a few months or a few seasons.  

3.2. Development of an ARIMA model for the SPI_1 time series              

The frequency of drought episodes was calculated using the Standard Precipitation Index (SPI). The following 

figure shows a sample to calculate   for the time series of SPI_1.  

 

Fig-1:SPI-1 time series 

The development of the time series model consists of three phases: identification, estimation, and diagnostic 

verification (Box and Jenkins, 1970). The identification stage involves transforming the data (if necessary) to 

improve the normality, the stationary of the time series and the determination of the general form of the model to be 

estimated.   During the estimation, the parameters of the model are calculated. Finally, diagnostic tests of the model 

are made to reveal the shortcomings of possible model and help in choosing the best model.  

Model Identification: The autocorrelation and the correlation part are measures of the association between current 

and past sets of values; they indicate the values of past series most useful for forecasting future values. The 

following figures estimate the autocorrelation function (FAC) and the partial autocorrelation function (FACP) for 

the time series SPI_1. 

The function   of autocorrelation (Figure 2) is sinking in as sinusoidal with peaks important the first two delays. The 

first two values are important to the partial autocorrelation function (Figure 3), which indicates that the process is 

modeled as ARIMA.  

The ARIMA model has been identified by examining the graphs FAC and FACP Series SPI_1. This indicates that 

an ARIMA model with 𝑝 = 1 − 2 and𝑞 = 0 is possible.  
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Fig- 2:Correlogram of SPI_1 

 

Fig-3:Correlogram partial SPI_1 

Specification and Estimation of the parameters of an ARIMA(2,0,0) model: We specify then estimate the 

ARIMA(2,0,0) model for the SPI_1 series. This model has a degree of non-seasonal differentiation and two delays 

of the AR model. By default, the distribution of innovation is Gaussian with a constant variance. 

Table-1: Evolution of ARIMA(2,0,0)parameters after statistical test 

Setting Value Standard error t-test 

Constant 0.13038 0.0462274 2.82042 

AR {1} 0.122446 0.0510369 2.39916 

AR {2} 0.144064 0.0526619 2.73563 

Variance 0.730902 0.0428182 17.0699 
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The two AR coefficients (AR {1} and AR {2}) are significant at the 0.05 threshold level.  

Checking diagnosis : As mentioned previously, a model has been selected, namely ARIMA(2,0,0). The model has 

been identified and the parameters were estimated, then the verification of the model concerns the control model 

residuals to see if they contain any systematic trend can be still removed to improve the model chosen. For a good 

forecast model, the residuals after adjusting the model should be white noise. This is done by examining the 

autocorrelation and the autocorrelation partial of residues of various kinds. For this purpose, the different 

correlations up to 20 offsets have been calculated. Also the histogram and the normal probability curve of the 

residuals were established to check whether the residue came from distribution or not normal.  

The test of Ljung - Box, which is commonly used in modeling ARIMA, was applied to tailings AR models 

equipped.  The Ljung -Box test is a type of statistical test of whether one of a group of autocorrelations in a time 

series is different from zero. Instead of testing randomness at each separate offset, it tests for " global" randomness 

based on a number of delays .  

Checking the Quality of the fit of the ARIMA (2,0,0)model : We deduce the residuals from the fitted model and 

verify that the residuals are normally distributed and not correlated.  

The function of autocorrelation residual (RACF) and the function of autocorrelation partial residual (RPACF) must 

be calculated to determine if the residuals are of white noise. If part of RACF or part of RPACF is significantly 

different from zero, this may indicate that the present model is insufficient. The ACF and PACF of the 

ARIMA(2,0,0) model residues are presented in Figures 4 and 5 respectively. As shown in Figures 4 and 5, most of 

the RACF and RPACF values are within the confidence limits , except that very few individual correlations appear 

large with respect to the confidence limits , which should cause the 20 delays . The figures do not indicate a 

significant correlation between the residues.  The residue histogram for SPI_1 is shown in Figure 7. The histogram 

shows that the residues are normally distributed. This means that the residue will be white noise.  The cumulative 

distribution graph for residual data normally appears as a straight line when plotted on normal probability paper, as 

shown in Figure 6. The figure shows that the normal probability figure of the residuals appears fairly linear so the 

assumptions of normality of the residuals hold.  

All results of the test of Ljung - Box retain the hypothesis zero that a series of residues does not exhibit 

autocorrelation (that is ℎ = 0 to say, and𝑝_𝑣𝑎𝑙𝑢𝑒 = 0,9872).  

 

Fig-4:Correlogram residues SPI_1 
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Fig-5: Partial correlogram residues of SPI_1 

 

Fig-6: Normal probability of residues for ARIMA (2 , 0.0 ) 
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Fig-7: Residue histogram for ARIMA (2, 0.0) 

Estimation of an ARIMA (2,0,0) model  

The model to be estimated is : 

𝑦𝑡 = 0,13038 + 0,122446𝑦𝑡−1 + 0,144064𝑦𝑡−2 + εt, 

Where εtis normally distributed with a standard deviation of.  

The signs of the estimated AR coefficients correspond to the AR coefficients on the right equation of the model. In 

delay operator in polynomial notation, the adjusted model is:   

(1 − 0,122446L − 0,144064L2)(1 − L)yt = εt, 

With the sign of inverse AR coefficients. 

Estimated droughts of the selected model:ARIMA models are mainly developed to predict the corresponding 

variable. There are two groups of forecasts, namely the sample period forecast and the sample forecast. The first 

group is used to develop confidence in the model and the second to generate real forecasts for use in planning. The 

ARIMA model can be used to produce two groups of forecasts. 

 
Fig-8: Comparison of SPI calculated with SPI estimated for ARIMA (2 , 0.0 ) 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

R E S I D U E S

F 
R

 E
 Q

 U
 E

 N
 C

 Y

50 100 150 200 250 300 350
-3

-2

-1

0

1

2

3

TIME IN MONTHS

S 
 P

  I
    1

 

 

SPI Observed

SPI Valued



Vol-6 Issue-1 2020             IJARIIE-ISSN(O)-2395-4396 
  

11387 www.ijariie.com 1000 

The estimation was made by using the best models from historical data. Results of the ARIMA (2, 0, and 0) 

model estimation are shown in Figures 8, and Figure 9. Figure 9 is a zoom window for the 336 months at the end of 

the SPI time series, and this zoom window was taken from Figure 8.  

Table-2: Statistical property for ARIMA (2,0,0) 

Model Average SPI 

observed 

Estimated 

average SPI 

SPI standard 

deviation 

observed 

Estimated SPI 

standard 

deviation 

RMSE 

ARIMA  
0,180 0.0028 0.872 0.856 0.249 

  

It is clearly observed that the predicted values of the SPI follow the values calculated in close collaboration. 

To evaluate the model, the basic statistical properties were compared between the observed and estimated data. The 

results, as shown in Figure 9, show that the predicted values preserve the statistical properties underlying the 

observed series. 

 
Fig-9: Comparison of SPI calculated with SPI estimated for ARIMA (2, 0.0)   ( From 336 months to the end of the 

time series )                      

4. CONCLUSION 

In this study, the SPI index was used as an indicator of drought and for predicting drought because of its many 

advantages over other indices. This study investigated the ability of ARIMA models to predict droughts using the 

methods of Box and Jenkins. The validation of the forecast models was carried out by comparing the SPI values 

calculated on the observed precipitation and the corresponding forecasts. The results showed a fairly good 

agreement between the observations and the forecasts, as was also confirmed by the values of certain performance 

indices. 
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