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ABSTRACT 

This paper proposes adaptive control architecture for maximum power point tracking (MPPT) in 

photovoltaic systems. Photovoltaic systems provide promising ways to generate clean electric power. MPPT 

technologies have been used in photovoltaic systems to deliver the maximum power output to the load under 

changes of solar insolation and solar panel's temperature. To improve the performance of MPPT, this thesis 

proposes a two-layer adaptive control architecture that can effectively handle the uncertainties and perturbations in 

the photovoltaic systems and the environment. The first layer of control is ripple correlation control (RCC), and the 

second layer is model reference adaptive control (MRAC). By decoupling these two control algorithms, the control 

system achieves the maximum power point tracking with shorter time constants and overall system stability. To track 

the maximum power point as the solar insolation changes, the RCC algorithm computes the corresponding duty 

cycle, which serves as the input to the MRAC layer. Then the MRAC algorithm compensates the under-damped 

characteristics of the power conversion system: the original transfer function of the power conversion system has 

time-varying parameters, and its step response contains oscillatory transients that vanish slowly. Using the 

Lyapunov approach, an adaption law of the controller is derived for the MRAC system to eliminate the under-

damped modes in power conversion. 

 

Keywords: Photovoltaic system, maximum power point tracking, model reference adaptive control and 

ripple correlation control. 

 

1. INTRODUCTION 

Photovoltaic systems are a critical component in addressing the national mandates of achieving energy 

independence and reducing the potentially harmful environmental effects caused by increased carbon emissions. 

Due to variations in solar insolation and environmental temperature, photovoltaic systems do not continually deliver 

their theoretical optimal power unless a maximum power point tracking (MPPT) algorithm is used. MPPT 

algorithms are designed in order for the photovoltaic system to adapt to environmental changes so that optimal 

power is delivered. Typically, MPPT algorithms are integrated into power electronic converter systems, where the 

duty cycle of the converter is controlled to deliver maximum available power to the load [1], [2].  

Several MPPT algorithms have been reported in the literature. The most common of these algorithms is the 

perturb and observe (P&O) method [3]–[5]. This control strategy requires external circuitry to repeatedly perturb the 

array voltage and subsequently measure the resulting change in the output power. While P&O is inexpensive and 

relatively simple, the algorithm is inefficient in the steady state because it forces the system to oscillate around the 

maximum power point (MPP) instead of continually tracking it. Furthermore, the P&O algorithm fails under rapidly 

changing  environmental conditions, because it cannot discern the difference between changes in power due to 

environmental effects versus changes in power due to the inherent perturbation of the algorithm [6]. The incremental 

conductance (INC) method uses the fact that the derivative of the array power with respect to the array voltage is 

ideally zero at the MPP (see Fig. 1), positive to the left of the MPP, and negative to the right of the MPP. The INC 

method has been shown to perform well under rapidly changing environmental conditions, but at the expense of 

increased response times due to complex hardware and software requirements [7].  
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Fig- 1: Power–voltage characteristics of photovoltaic systems. 

The fractional open-circuit voltage (FOCV) method uses an approximate relationship between VOC, the open-

circuit voltage of the array, and VM, the array voltage at which maximum power is obtained, to track the MPP [8]. 

Like P&O, the FOCV algorithm is inexpensive and can be implemented in a fairly straight-forward manner. 

However, the FOCV method is not a true MPP tracker since the assumed relationship between VOC and VM is only 

an approximation. Fuzzy logic and neural network-based  algorithms have demonstrated fast convergence and high 

performance under varying environmental conditions, but the implementation of these algorithms can be undesirably 

complex [9], [10]. To this end, a general problem associated with MPPT algorithms is the transient oscillations in 

the system’s output voltage after the duty cycle is rapidly changed in order to track the MPP [7]. Thus, the ideal 

MPPT control algorithm would be simple and inexpensive, and would demonstrate rapid convergence to the MPP 

with minimal oscillation in the output voltage. 

 
Fig- 2: Proposed MPPT control architecture. 

This paper develops a two-level MPPT control algorithm that consists of ripple correlation control (RCC) [11]–

[14] in the first level and model reference adaptive control (MRAC) [15], [16] in the second level. As seen in Fig. 2, 

in the first control level the array voltage vPV and power pPV serve as the inputs to the RCC unit. The RCC unit 

then calculates the duty cycle of the system, d(t), to deliver the maximum available power to the load in the steady 

state. In the second control level, the new duty cycle calculated from the RCC unit is routed into an MRAC 

architecture, where the dynamics of the entire photovoltaic power conversion system, or the plant, are improved to 

eliminate any potential transient oscillations in the system’s output voltage. Transient oscillations in the system’s 

output voltage can result after the duty cycle has been updated to account for rapidly changing environmental 

conditions. To prevent the plant from displaying such oscillations, a critically damped system is implemented as the 

reference model in Fig. 2. During adaptation, the error between the plant and reference model is utilized to tune the 

parameters in the feed forward and feedback controllers, Cf and Cb , respectively. Properly tuning the controller 

parameters enables the output of the plant to match the output of the reference model, at which point the error 

converges to zero and the maximum power is obtained. Both the theoretical and simulation results demonstrate 

convergence to the optimal power point with elimination of underdamped responses that are often observed in 

photovoltaic power converter systems.  

The proposed two-level controller structure can reduce the complexity in system control, with RCC mainly 

handling the ―slow‖ dynamics and MRAC handling the ―fast‖ dynamics. The previous literature has proven the 

stability of RCC and MRAC, respectively. Although coupling two stable subsystems will not necessarily lead to the 
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stability of the overall system, our proposed two-level structure can effectively decouple the RCC and MRAC levels 

in stability analysis, because the time constants of the two control algorithms used here are significantly disparate.  

This paper focuses mostly on the MRAC level of the proposed control architecture. In a sequel paper (in 

preparation), we will provide a comprehensive analysis validating the coupling of MRAC with RCC. The rest of this 

paper is organized as follows: Section II provides the problem context for MPPT of photovoltaic systems as well as 

the background for the dynamics of the converter system. Section III describes the proposed two-level control 

architecture for MPPT. Results and discussion are given in Section IV followed by concluding remarks in Section. 

2. SYSTEM DESCRIPTION 

2.1. PV Characteristics 

 
Fig- 3: Current–voltage characteristics of photovoltaic systems under various levels of solar insolation. 

Fig. 3 presents the current–voltage (I–V) characteristics of photovoltaic systems under various levels of 

solar insolation. The MPP occurs at the so-called ―knee‖ of the I–V curve, (VM, IM): when either VM or IM is 

achieved, the maximum available power PM is obtained. A photovoltaic system can regulate the voltage or current of 

the solar panel using a dc–dc converter interfaced with an MPPT controller to deliver the maximum allowable power 

[17], [18].  

 
Fig- 4: MPPT controller of a photovoltaic boost converter system. 

Fig. 4 shows the integration of such a system where a boost converter is utilized to deliver optimal power to 

the load. Depending on the application, other power converter topologies may be used in place of the boost  

converter. In the boost converter system shown in Fig. 4, the MPPT controller senses the voltage and current of the 

solar panel and yields the duty cycle d to the switching transistor S. The duty cycle of the transistor is related to the 

array voltage through 

     (1) 
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where vPV and iPV are the array voltage and current, respectively, and RO is the load resistance. Both the array  

voltage and current consist of dc (average) terms, VPV and IPV, as well as ripple terms, ˆvPV andˆiPV. The goal 

then is to design a controller that continually calculates the optimal value of the duty cycle so that VPV tracks VM 

(or IPV tracks IM) and thus delivers the maximum available power. 

2.2. Converter Dynamics 

The relationship (1) provides the foundation for conventional MPPT algorithms to compute the converter’s 

duty cycle in steady states. However, to optimize transient responses, the MPPT control must consider the dynamics 

between the duty cycle and array voltage. Since transient oscillations are undesired and can lead to inefficient 

operation of the system, the MPPT control needs to eliminate transient oscillations in the array voltage after the duty 

cycle has been updated to account for changing environmental conditions. A detailed dynamic model of the boost 

converter can be found in [19]. To simplify the analysis of the system’s transient response, we consider a small 

signal equivalent circuit (see Fig. 5) as suggested in [7].  

 
Fig- 5: Small signal equivalent circuit of photovoltaic power conversion system. 

A resistor RI is used to model the solar array with a small signal array voltage ˆvPV and small signal array 

currentˆiPV across its terminals. We now derive the transfer function from the control signal (duty cycle) to the array 

voltage in small signal operation around an operating point. This transfer function characterizes the dynamics of the 

system. It should be noted that the dynamic model in Fig. 5 shows in the load of the boost converter a storage 

battery, which is practical for photovoltaic systems. While this representation will change the value of vPV given i(1) 

and move the operating point in the steady-state response, it will have little effect on the system’s frequency 

response for the range of frequencies near the natural frequency, where we see resonances or under damped 

oscillations. Therefore, we ignore the dynamics of the battery in the derivation of the transfer function from the duty 

cycle to the array voltage in small signal operation. In analyzing Fig. 5, we have the following relationship in the 

frequency domain or s-domain: 

   (2) 

where s is the Laplace variable, ˆ d represents the small signal variation around the converter’s duty cycle D at the 

operating point, ˆ d(s) and ˆvPV(s) are the Laplace transforms of ˆ d(t) and ˆvPV(t), respectively, f(D) is the  

relationship between the operating duty cycle, D, and the steady-state dc input voltage of the boost converter VPV, 

f_(D) is the derivative of f(D) with respect to the duty cycle at the operating point D. From (2), we can obtain 

     (3) 
It is known that 

     (4) 

where VO is the steady-state dc output voltage of the boost converter. The relationship (4) assumes that the dc 

steady-state relation between f(D) and VO is unaffected by the transient switching action. From (4), we have f’(D) = 

−VO and thus (3) turns to 

     (5) 
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The minus sign in (5) indicates that decreasing the duty ratio will increase the panel voltage. The parasitic 

components of the power stage are not considered in this analysis, which is consistent with previous work on 

modeling the dynamics of photovoltaic integrations with dc–dc converters [20]. 

The aforementioned transfer function is derived from a linearized version (see Fig. 5) of the nonlinear 

system in Fig. 4, around a single operating point. As solar insolation varies, the operating point of the system will 

vary thereby changing the effective values of the parameters in (5), specifically the RI. To illustrate the effect of RI 

on the system, we can analyze the denominator of (5) in the canonical form  

       (6) 

where ωn is the natural frequency and ζ the damp ratio. Comparing (6) with the denominator of (5), we have ζ = 

1/2R1 𝐿0/𝐶1 When the damping ratio ζ=is less than 1, the system is underdamped and presents oscillations in its 

step responses. To prevent the underdamped oscillations, an adaptive controller is proposed to regulate the dynamics 

of the closed-loop system or controlled plant. The goal is to tune the damping ratio of the controlled plant to 

approach 1 so that the system is critically damped. While it is possible to adjust the value of RI to yield a critically 

damped system for a single operating point, a fixed RI cannot keep the system critically damped for varying 

operating conditions.  

 
Fig- 6: Current–voltage characteristics of a solar panel with varying RI superimposed over the graph. 

Fig. 6 illustrates current–voltage characteristics for a photovoltaic array at three different levels of solar 

insolation: 400, 600, and 800 W/m2 . As described in [20], the value of RI for the photovoltaic array can be 

determined by the slope tangential to the operating point of the system. 

       (7) 

The MPP for the curve related to 600 W/m2 is denoted by point A, i.e., point (VM, IM) in Fig. 6. The value 

of RI at point A can be inferred as the magnitude of the inverse slope of the line tangential to point A, as suggested 

by (7). If the operating point moves from point A to point B, under constant solar insolation, it is clear that the value 

of RI will change. Furthermore, if the operating point moves from point A to point C, which is the MPP for a solar 

insolation of 400 W/m2 , again a different value for RI is obtained. Thus, even at a new MPP, there is no guarantee 

that the operating RI will be equal to the previous optimal RI. Moreover, there is no guarantee that the operating 

optimal RI will deliver a critically damped system. We therefore propose a  two-level controller to track the MPP. In 

the first control level, RCC will be used to force the operating point to the optimal RI . In the second level, MRAC 

will be used to optimize the dynamics of the converter so that optimal RI also delivers a critically damped system 

(with ζ = 1), in spite of any changes in solar insolation. 

3. PROPOSED MPPT ALGORITHM 

We propose a two-level adaptive control algorithm for MPPT (see Fig. 2). In the first control level, RCC is 

utilized to calculate the duty cycle of the converter, which is expected to deliver maximum available power to the 

load in the steady state. In the second control level, anMRAC structure regulates the dynamics of the converter in 



Vol-1 Issue-5 2015   IJARIIE-ISSN(O)-2395-4396 
 

1479      www.ijariie.com 561 

response to the duty cycle calculated from RCC, preventing the array voltage from transient oscillations after 

changes in solar insolation. The RCC level is responsible to handle changes in solar insolation, and the tuning 

process of RCC should be fast enough to catch up to the changes in solar insolation. Therefore, the time constant of 

RCC is required to be smaller than that of the dynamics of insolation changes. In comparison, MRAC is responsible 

to maintain optimal damping characteristics of the converter whose time constant is much smaller than that of 

environmental changes. The tuning process of MRAC must be fast enough to catch up to the changes in the 

operating point of the converter and the responses of RCC. Therefore, the time constant of MRAC is required to be 

much smaller than that of the RCC. The significant difference between these two time constants allows us to 

decouple the analyses for RCC and MRAC, and thus greatly simplifies the overall control design. Since RCC is well 

studied in the literature, this section focuses mostly on the MRAC level of the two-level adaptive control (see 

Section III-B). We provide only a brief introduction of RCC in Section III-A, but in a sequel paper we will give a 

more comprehensive analysis on validating the coupling of RCC and MRAC. 

3.1. Ripple Correlation Control 

The RCC calculates the duty cycle that delivers the maximum power to the load in the steady state. The main 

innovation of RCC is to use the switching ripple inherent to the converter to perturb the system and thus track the 

MPP [14]. The RCC is essentially an improved version of the P&O method [3]–[5] except that the perturbation is 

inherent to the converter. Such a methodology is advantageous because it negates the necessity for external circuitry 

to inject the perturbation. In addition, RCC has been proven to converge asymptotically to the MPP with minimal 

controller complexity and straight-forward circuit implementation [14]. The RCC is based on the observation that 

the product of the time-based derivatives of the array voltage (vPV) and power (pPV) will be greater than zero to the 

left of the MPP, less than zero to the right of the MPP, and exactly zero at the MPP (see Fig. 1)  

    (8) 

    (9) 

    (10) 

These observations lead to the control law derived in [11] 

      (11) 

where k is a constant of negative gain. The control law (11) can be qualitatively described as follows: if vPV 

increases and there is a resulting increase in pPV, the system’s operating point is to the left of the MPP (see Fig. 1) 

and therefore d should decrease—causing an increase of vPV according to (1); if pPV decreases after an increase in 

vPV, then the system’s operating point is to the right of the MPP (see Fig. 1) and thus d should increase in order to 

reduce vPV. From inspection of (10) and (11), the goal then is to drive the time-based derivative of d to zero so that 

maximum power is obtained. As established in [11]–[14], RCC has a well-developed theoretical basis and has been 

mathematically proven to yield the optimal value of the duty cycle in order to deliver maximum power in the steady 

state. The advantage of RCC over conventional algorithms such as P&O, is that in the steady-state RCC converges 

to the MPP while P&O oscillates around the MPP. Relative to fuzzy logic and neural networks, RCC is  

dvantageous due to its simple implementation as well as its low cost. 

In addition to steady-state analysis, one must also consider the transient response of the boost converter 

system shown in Fig. 4 so that the controller can rapidly converge to the theoretical MPP with minimal oscillation. 

In the next section, an MRAC algorithm is proposed to prevent the array voltage from exhibiting an under damped 

response.  

3.2.  Proposed MRAC Method 

In the previous section, RCC is used to calculate the duty cycle aimed at delivering the maximum available 

power in the steady state. It is also desired that the system converges to the MPP swiftly during changes in solar 

insolation.  As shown in (5), the relationship between the array voltage and the converter duty cycle is a highly 

dynamic process. Since the operating point will vary as solar insolation varies, it is not guaranteed that the array 
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voltage exhibits critically damped behavior without adaptive control. The MRAC architecture proposed here is to 

maintain a critically damped behavior of the array voltage.  

The basic idea of MRAC is to design an adaptive controller so that the response of the controlled plant 

remains close to the response of a reference model with desired dynamics, despite uncertainties or variations in the 

plant parameters. The proposed architecture of MRAC is shown in Fig. 7.  

 
Fig- 7: (a) Proposed MRAC strucutre. (b) Controller structure in the proposed MRAC. 

The input to the overall system, r(t), is the change in duty cycle calculated in Section III-A using RCC. The 

plant model in Fig. 7 corresponds to the transfer function in (5). However, for convenience, we change its sign (by 

multiplying −1 to it) so that the plant model has only positive coefficients. We use up (t) and yp (t) to represent the 

input and output of the plant, respectively, and reexpress the plant model as 

   (12) 

where the values and meanings of kp, ap , and bp can be implied from (5). The reference model is chosen to exhibit 

desired output ym(t) for input r(t) 

    (13) 

where km is a positive gain, and am and bm are determined so that the reference model delivers a critically damped 

step response. The control objective is to design up (t) so that yp (t) asymptotically tracks ym(t). 

In the following, we take four steps to derive the adaptation law for controller parameters in MRAC: 1) 

choosing the controller structure; 2) finding state-space expressions for the controlled plant and the reference model; 

3) constructing error equations; and 4) deriving an adaptation law for MRAC using the Lyapunov method. 

1) Controller Structure: To achieve the control objective, we use the controller structure shown in Fig. 7(b).  

The expression for the controller is 
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   (14) 

where θ ≡[𝜃0,𝜃1,𝜃2,𝜃3 ]𝑇  is the parameter vector of the controller, w is defined as [𝑟,𝑤1,𝑤2,𝑉𝑝 ]𝑇with w1 ≡ 1 

/(s+λup) and w2 ≡ 1/( s+λyp) , and 1/( s+λ) is a stable filter with an arbitrarily chosen λ > 0. Equivalently, w1 and w2 

are determined by 

       (15) 

It is shown in [16] that the controller structure (14) is adequate to achieve the control objective: it is possible tomake 

the transfer function from r to yp equal to Gm. Specifically, yp (s)/r(s) equals ym(s)/r(s) when θ equals 𝜃∗ =
[𝜃0

∗.𝜃1
∗.𝜃2

∗.  𝜃3
∗]𝑡  with  

     (16) 

2) State-Space Expressions of the Controlled Plant and the Reference Model:  Let {Ap,Bp, Cp} be a  

minimal realization of the plant Gp (s) 

      (17) 

 

where xp is a 2-D state vector. Considering the dynamics of the controller, i.e., (14) and (15), the closed-loop system 

with the plant and controller in the loop can be described by the following state-space expression: 

   (18) 

where xpe is an extended state vector defined by[𝑥pe,𝑤1,𝑤2 ]𝑇 , θ∗ is determined by (16), and matrices Ape,Bpe, and 

Cpe are defined by 

. .  

Note that, when up =  𝜃𝑡
∗w, (18) becomes 

 

 Meanwhile, up =  𝜃𝑡
∗w also implies yp (s)/r(s) = ym(s)/ r(s). Therefore, {Ape, 𝜃0

∗. Bpe, Cpe} should be a realization of 

the reference model. In other words, the reference model can be realized by the following state-space expression: 
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     (19) 

where xme is the four dimensional state vector of the aforementioned  realization. It can be verified that Ape is 

asymptotically stable. 

3) Error Equations: By subtracting the reference model’s state-space equation (19) from the plant’s state-

space equation (18), the state-space equations for state error, controller parameter error, and the tracking 

error are obtained as follows: 

  (20) 

where e, e0 , and ˜θ represent the state error, tracking error (output error), and controller-parameter error, 

respectively  

 
In finding the adaption law for the controller by means of the Lyapunov function, the input–output transfer function 

of a state error-equation should be strictly positive real (SPR) [21]. However, the transfer function of the realization 

{Ape,Bpe, Cpe} in (20) is not SPR, because Cpe(𝑠𝐼 −  𝐴𝑝𝑒)−1Bpe equals Gm(s)/ 𝜃0
∗  according to (19) and the relative 

degree of Gm(s) is two [see (13)], which implies that Gm(s)/ 𝜃0
∗

 is not SPR [16]. To overcome the aforementioned 

difficulty, we use the identity (𝑠 +  𝑔)(𝑠 +  𝑔)−1
 = 1 for some g > 0 and rewrite (20) as  

   (21) 

where ug=up/( s+g) and φ = w/( s+g). The term (s + g) will increase the degree of the numerator to make the relative 

degree of the transfer function equal to one. Since ug = φ, the controller can be expressed as up = (s + g)ug = ˙𝜃𝑇𝑤  +  

𝜃𝑇𝜑  + g𝜃𝑇φ =𝜃 𝑇φ + 𝜃𝑇 (𝜑  + gφ) = 𝜃 𝑇φ + 𝜃𝑇w. 

Now introduce 

       (22) 

Then, we can derive 

 

      (23) 

For the new state-error equation (23), its transfer function from 𝜃 𝑇φ to e0 should be the same as the transfer 

function from 𝜃 𝑇φ to e0 in (21) because (23) is equivalently transformed from (21). Therefore, the realization 

{Ape,B1, Cpe} has the following transfer function: 
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   (24) 

where the positive constant g is chosen to be less than am. It can be shown that (24) is SPR for any g satisfying 0 < 

g < am. 

4)  Derivation of the Adaptation Law: To derive the adaptation law for controller parameters, we construct a  

Lyapunov function that has two error vectors—the controller parameter error 𝜃  and the state error 𝑒   

     (25) 

where Γ is an arbitrary symmetric positive definite matrix and P is a symmetric positive definite matrix determined 

using Meyer– Kalman–Yakubovich (MKY) Lemma [22]. According to MKY Lemma, since Ape is stable and 

{Ape,B1, Cpe} is a realization of the SPR transfer function (24), there exist a symmetric positive definite matrix P, a 

vector q, and a scalar ν > 0 such that for any given symmetric positive definite matrix L. Matrix P in (25) satisfies 

(26). 

     (26) 

 

The time-derivative of the Lyapunov function (25) along the solution of (23) can be calculated as 

 

Since  , we can choose 

       (27) 

so that 

    (28) 

Under the adaptation law (27), the condition (28) will always be satisfied, which guarantees that the tracking error 

and control parameter error are both stable and bounded. According to the derivations above, the overall MRAC 

rules can be concluded as follows: 

   (29) 

4. SIMULATION RESULTS AND DISCUSSION 

The adaptive controller presented in Section III was then simulated for verification. The plant model was 

chosen to deliver an actual array voltage with an underdamped step response. The reference model was designed to 
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deliver a theoretical MPP voltage with a critically damped step response. Its damping ratio, which equals am 2 √ bm , is 

the determining factor as inferred from (13). Normally, the ratio is chosen to be either exactly 1 or slightly less than 

1. In the latter case, the step response rises faster at the cost of slight overshoot. The desired outcome of simulation 

would be that after the plant has undergone the adaptation   phase, the parameters of the controlled plant would 

converge to the parameters of the reference model and thus the adapted array voltage would show critically damped 

behavior. 

 
(a) 

 
(b) 

Fig- 8: Comparison of theoretical MPP voltage, adapted array voltage, and unadapted array voltage. The input is a 

square pulse width modulated signal. (a) Early adaptation stage. (b) Middle adaptation stage. 

 Fig. 8 shows a comparison between the actual adapted array voltage (using MRAC) and the theoretical MPP 

voltage, where a square pulse width modulated signal is used to simulate the continued updating of the duty cycle 

due to the variance in solar insolation. For comparison purpose, Fig. 8 also shows the unadapted array voltage 

(without using MRAC). The scale in Fig. 8 and subsequent figures has been normalized to an interval between 0 and 

1 V. The adapted array voltage oscillates considerably more than both the theoretical MPP voltage as well as the 

unadapted array voltage. The plant starts to learn and the adapted array voltage begins to dampen while the 

unadapted array voltage continues to oscillate. Eventually, both the adapted array voltage and the unadapted array 

voltage reach the theoretical steady-state MPP voltage. This demonstrates the accuracy of RCC and its ability to 

calculate the correct optimal duty cycle which can deliver maximum available power in the steady state. Then the 

solar insolation changes and the unadapted voltage shows an under damped response. At this point, the adapted 

voltage also diverges slightly away from the theoretical MPP. This change in solar insolation represents the first 

time the ambient conditions have changed after the adapted array voltage has reached a steady-state value. Thus, the 

plant must learn to adapt to such a change in solar insolation. However, the adapted array voltage in Fig. 8(a) shows 

no oscillatory response even after the first change in sunlight. That is one of the goals of this study, which is to 

eliminate any potential underdamped response by the plant due to rapid changes in solar insolation. Next, the 

adapted array voltage should continue to learn, and converge to the theoretical MPP during the transient changes in 

solar insolation as shown in Fig. 8(b). In the middle stage of adaptation shown in Fig. 8(b), the adapted array voltage 

has almost completely converged to the theoretical MPP, even during changes in solar insolation. Conversely, the 

unadapted array voltage continues to oscillate at each change in solar insolation. In observing the solar array 

characteristics seen in Fig. 1, it can be inferred that during changes in solar insolation, the unadapted array voltage 
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fluctuates to the left and right of the MPP, before finally reaching the MPP. On the other hand, the adapted array 

voltage converges directly to the theoretical MPP with no fluctuation. 

 
(a) 

 
(b) 

Fig- 9: Error between theoretical MPP voltage and adapted array voltage due to a square pulse-width modulated 

signal. (a) Early adaptation stage. (b)Middle adaptation stage. 

The observations from Fig. 8 are supplemented in Fig. 9, where the error between the actual adapted array 

voltage and the theoretical MPP voltage is shown. The error between the unadapted array voltage and theoretical 

MPP voltage is also shown in Fig. 9. As seen in Fig. 9(a), in the early control stage the error for the adapted array 

voltage is significant. This is consistent with the violent oscillations observed in the adapted array voltage seen in 

Fig. 8(a).However, after the initial learning phase, the error between the adapted array voltage and theoretical 

MPP voltage converges to zero in the steady state. As previously stated, the solar insolation changes and there is a 

transient error in both the adapted array voltage as well as the unadapted array voltage. Comparatively, the error for 

the adapted array voltage is smaller in magnitude and time duration. Then in the middle stage of adaptation shown in 

Fig. 9(b), the adapted array voltage error during each transient change in solar insolation is significantly smaller than 

seen in the initial phase. Conversely, the unadapted array voltage error continues to oscillate with a larger magnitude 

and time-duration than the adapted array voltage. 

5. CONCLUSION 

In order to improve the efficiency of photovoltaic systems, MPPT algorithms are used, aiming to deliver the 

maximum available power from the solar array to the load. Critical issues to be considered in the MPPT algorithms 

include system complexity, uncertainty, and dynamical performance. This paper developed a two-level adaptive 

control architecture that can reduce complexity in system control and effectively handle the uncertainties and 

perturbations in the photovoltaic systems and the environment. The first level of control was RCC, and the second 

level was MRAC. This paper focused mostly on the design of the MRAC algorithm, which compensated the 

underdamped characteristics of the power conversion system. In a sequel paper, we will provide a comprehensive 

analysis validating the coupling of MRAC with RCC. 
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