
Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5183

Microservices Resiliency Patterns to instrument

Enterprise Fault Tolerance.

Amit Sengupta (Independent Research)
Email – amits2913@gmail.com

Independent Researcher

Abstract

In a monolith application, a single error can bring down the entire system. This risk is reduced in a microservices

architecture because it uses smaller, independently deployable units that don’t affect the whole application or system.

Microservice application developers try to mitigate the impact of partial outages typically by implementing service-

to-service interactions that use well-known resiliency patterns, such as Retry, Fail Fast, and Circuit Breaker.

However, those resiliency patterns as well as their available open-source implementations are often documented

informally, leaving it up to application developers to figure out when and how to use those patterns in the context of

a particular microservice application.

Simply converting a monolith into microservices doesn’t automatically fix all issues. Microservices heavily rely on

distributed systems, making resiliency critical to their design and performance. When architecting distributed cloud

applications, it’s crucial to anticipate failures and design your applications with resiliency in mind. Microservices

are likely to fail at some point, so it’s essential to be prepared for failures and design your microservices to handle

failures. Having said that, we’ll discuss fault tolerance and failure recovery in microservices and how to achieve

them.

Keywords: - Microservices, Resiliency and Reliability, Patterns and Anti-patterns, Retry Pattern, Circuit Breaker

Pattern, Fallback Pattern, Bulkhead Pattern, Failover and Redundancy, Enhanced Customer Experience, Business

Continuity,

Introduction: -

Resiliency is an integral aspect of designing, developing, and operating microservice architectures. Application-to-

application communication over the network is inevitable in distributed systems. Anything can go wrong during app-

to-app communication, like network glitches or timeouts, application unavailability, data center failovers, etc. Due to

these events, applications may overload, stop responding, or even crash the entire system.

Lack of Resiliency with Traditional Systems: -

Traditional architectures and designs were not made for the complexity and distribution of microservices. And hence

traditional resilience approaches, like redundancy in one application or relying on a single powerful server, might not

be sufficient for microservices for several reasons:

Complexity: Microservices bring more complexity because they are distributed. Traditional methods that work in

simpler architectures may struggle with microservices’ complexities, such as managing service dependencies and

handling network issues.

Single Point of Failure: Traditional methods often rely on one central system or server. If that fails, the whole

application can go down. In microservices, the aim is to avoid this by having redundancy at different levels.

mailto:amits2913@gmail.com

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5184

Resource Efficiency: Microservices allow for better resource use by scaling individual services independently.

Traditional methods are less efficient because they scale entire applications, leading to unused resources.

Elasticity: Microservices can scale up and down quickly based on demand. Traditional systems may not be as elastic

and can’t adapt as fast.

Isolation and Containment: Microservices need to be isolated to prevent failures from spreading. Traditional

methods might not have the right mechanisms for this.

Application Resiliency with Microservices: -

Resilience in microservices refers to an application’s ability to withstand failures, stay available, and deliver consistent

performance in distributed environments. Resilience patterns are established mechanisms that empower applications

to handle failures gracefully, ensuring stability in complex, distributed systems. By using these patterns, developers

can reduce the impact of unexpected errors or high loads, leading to less downtime and better overall performance.

In distributed systems, failures are unavoidable due to various factors like network issues, unresponsive services, or

hardware problems. Hence, it’s essential to acknowledge these uncertainties and develop strategies to manage them

effectively. This is where resilience patterns come into the picture, helping create fault-tolerant systems that respond

well to failures, ensuring the application remains available and functional. Implementing resilience patterns in

microservices offers several key benefits:

• Minimized Service Downtime: These patterns help applications recover quickly from failures, minimizing

disruptions and ensuring high availability for users.

• Improved Fault Isolation: By using resilience patterns, developers can isolate failures, preventing them

from spreading and causing widespread issues.

• Consistent System Performance: A resilient microservices application can maintain consistent

performance, even under high load or network issues.

• Enhanced User Satisfaction: Reliable performance improves user experience, building trust and loyalty.

Resiliency Patterns with Microservices –

Below are the commonly used resiliency patterns in microservices -

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5185

Circuit Breaker Pattern:

The circuit breaker pattern is used to prevent repeated calls to a failing service, which can overload the system and

worsen the situation. The circuit breaker monitors the status of the service and “opens” the circuit when it detects a

failure. Subsequent calls are then “short-circuited” and fail immediately, without making a request to the service. The

Circuit Breaker pattern with fallback is a strategy used in microservices architecture to boost system resilience. Picture

it as a safety net for your services. When a critical service, like a product catalog, starts acting up due to high traffic

or errors, the circuit breaker kicks in and temporarily redirects the system to a backup plan the fallback mechanism.

This can be displaying cached data or a simple message to users, preventing the entire system from going haywire.

The circuit breaker periodically checks if the troubled service is back on track, automatically switching back to normal

operations when it’s ready. Essentially, it’s a smart way to handle hiccups in microservices, ensuring smoother user

experiences even when certain services hit a rough patch.

Retry Patterns:

Retrying failed operations is a common strategy to improve the robustness of microservices. By retrying a failed

operation, the service has another chance to succeed, especially in cases where the failure is transient.

Additionally, when implementing the retry pattern, developers need to be mindful of potential performance

implications. Retrying requests too frequently or for too long can put unnecessary strain on external systems and lead

to degraded performance or even service outages.

Retry policies come in a variety of forms, including fixed, exponential, and random. Finally, which retry policy to use

will be determined by the specific needs and priorities of the system being designed. A good retry policy will strike a

balance between reliability and speed, and it will be designed to adapt to changing network conditions over time.

Timeouts:

The Timeout pattern is a resiliency pattern that helps to prevent system overload and improve the overall reliability of

a microservice architecture. In this pattern, a timeout is set for each operation or service call, and if a response is not

received within that time limit, the operation is considered to have failed.

The Timeout pattern is designed to prevent a microservice from being stuck waiting for a response that may never

come, which can lead to the system becoming unresponsive or even crashing. By setting a timeout for each operation,

the microservice can move on to other tasks and prevent system overload. When implementing the Timeout pattern,

it’s important to choose an appropriate timeout value for each operation. The timeout value should be set based on the

expected response time of the service or operation, and it should be long enough to allow for normal operation but

short enough to prevent the system from becoming overloaded.

In addition, it’s important to handle timeouts gracefully by providing appropriate error messages or fallback responses

to the client. This can help to ensure that the client is aware of the timeout and can take appropriate action, such as

retrying the operation or using an alternative service. The Timeout pattern can be used in conjunction with other

resiliency patterns, such as the Circuit Breaker pattern, to provide even greater resiliency and reliability to a

microservice architecture. By implementing the Timeout pattern, you can help to prevent system overload, improve

reliability, and ensure the overall resiliency of your microservice system.

Fallback Mechanism:

Fallback provides an alternative solution during a service request failure. When the circuit breaker trips and the circuit

is open, a fallback logic can be started instead. The fallback logic typically does little or no processing and return

value. Fallback logic must have little chance of failing, because it is running as a result of a failure to begin with.

Each service that’s wrapped by a circuit breaker can implements a fallback using one of the following three

approaches:

• Custom fallback: In some cases, a service’s client library provides a fallback method we can invoke, or in other

cases we can use locally available data on an API server (eg, a cookie or local JVM cache) to generate a fallback

response

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5186

• Fail silent: In this case the fallback method simply returns a null value, which is useful if the data provided by

the service being invoked is optional for the response that will be sent back to the requesting client

• Fail fast: Used in cases where the data is required or there’s no good fallback and results in a client getting a 5xx

response. This can negatively affect the device UX, which is not ideal, but it keeps API servers healthy and allows

the system to recover quickly when the failing service becomes available again.

Bulkhead Pattern:

The Bulkhead Pattern in software architecture divides a system’s various parts or subsystems into isolated groups so

that the other groups can continue to operate normally even if one group fails or becomes overburdened. In essence,

the pattern makes sure that every group of components has access to exclusive resources and is not hampered by the

failures or traffic of other groups.

The bulkhead pattern gets its name from a naval engineering practice where ships have internal chambers isolating

their hull so that if a rock cracks it, water can't spread to the entire ship causing it to sink. If the hull of a ship is

compromised, only the damaged section fills with water, which prevents the ship from sinking.

The Bulkhead pattern is designed in a way where elements of an application are isolated into pools so that if one fails,

the others will continue to function. The ability of the system to recover from the failure and remain functional makes

the system more resilient.

Health Checks:

A health check is a special REST API implementation that you can use to validate the status of a microservice and its

dependencies. A health check can assess anything that a microservice needs, including dependencies, system

properties, database connections, endpoint connections, and resource availability. The overall status of the

microservice depends on whether all the configured health checks pass. A microservice is considered available and

reports an UP status if all the configured health checks are successful. If one or more health checks fail, the

microservice is considered unavailable and reports a DOWN status. Services can report their availability to a defined

endpoint by implementing the API that is provided. A service orchestrator can use these status reports to decide how

to manage and scale the microservices within an application.

Failover and Redundancy:

Microservices Failover refers to the process of automatically resolving the failure of one or more microservices,

ensuring the overall functionality, availability, and resilience of the application. Failover mechanisms are vital to

maintain the uninterrupted flow of services in distributed systems, as they address the potential points of failure and

enable seamless recovery from outages or errors.

As applications grow big and complex, the number of microservices increases, and so does the possibility of failures.

Failures in microservices can be attributed to various reasons, such as hardware issues, network latency, software

bugs, or even human errors. This is where Microservices Failover comes into play, offering a set of mechanisms that

ensure the application continues to function and serve its users in the face of failures.

There are several strategies that can be employed for Microservices Failover, including:

• Load balancing: Distributing the workload across multiple instances of a microservice ensures that no single

instance bears the burden of excessive traffic, reducing the risk of failure due to overload. This can be

achieved through various algorithms such as Round Robin, Least Connections, or even custom heuristics.

• Health monitoring and automated failover: Regularly checking the health of individual microservice

instances offers insights into their performance and load levels. By detecting failing instances early on, it is

possible to prevent cascading failures and route traffic to healthy instances.

• Automatic recovery and self-healing: In case a microservice instance fails, the system should automatically

provision new instances to maintain the desired level of redundancy and load distribution. Container

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5187

orchestration tools such as Kubernetes or Docker Swarm provide self-healing capabilities that manage the

lifecycle of instances and ensure appropriate failover.

• Failover through Circuit breaking: Circuit breaking is a pattern that prevents overwhelming a failing

microservice by temporarily limiting the traffic sent to that service. Service Mesh are specifically designed

to provide circuit breaking functionality, allowing developers to define policies for gracefully handling

failures and maintaining overall system stability.

• Failover through Retry and timeout policies: Implementing intelligent retry mechanisms and timeout

policies can help alleviate the impact of transient failures in microservices. These policies should be defined

depending on the specific requirements and characteristics of each microservice, taking into account factors

such as response time, error rate, error budget etc.

Event Driven Patterns:

Event-driven architecture (EDA) is used in microservices where every microservice in the ecosystem can

asynchronously publish and subscribe to events via an event broker.

EDA provides a flexible, scalable, and real-time approach to processing actions and responses quickly. It is ideal for

managing high volumes and high-velocity data in real time with a minimum time lag. It can handle complex event

processing, such as pattern matching or aggregation over time windows.

There are design patterns within EDA which can help you elevate scalability, resilience and maintainability of the

systems. These patterns provide solutions to common challenges and guide the organization of components and their

interactions. Below listed are three popular design patterns which is widely used -

• Event Sourcing

Event Sourcing is a design pattern that involves capturing all changes to an application's state as a sequence of

events. Instead of storing the current state of an entity, the system stores a log of events that represent state

transitions.

• Command Query Responsibility Segregation (CQRS)

CQRS is a design pattern that separates the read model (queries) and the write model (commands) of a system.

By splitting these responsibilities, CQRS enables independent scaling and optimization of read and write

operations.

• Saga Pattern

The Saga Pattern is a design pattern that helps manage distributed transactions in a microservices or event-driven

architecture. A saga is a sequence of local transactions, where each transaction is coordinated by an event. If one

transaction fails, compensating transactions are executed to undo the previous steps and maintain data

consistency.

Conclusion: -

Ensuring resilience in microservices architectures is key to maintaining high availability, performance, and customer

satisfaction. By implementing comprehensive fault tolerance and failure recovery strategies, organizations can protect

their systems against inevitable failures and minimize their impact. As technology evolves, so will the tools and

techniques for building resilient systems, requiring ongoing attention and adaptation to best practices in microservices

architecture.

Reference: -

1. B. Beyer et al., Site Reliability Engineering: How Google Runs Production Systems. O’Reilly, 2016.

2. J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,”

https://martinfowler.com/articles/microservices.html, 2014, [Online; last access on February 25, 2020].

3. P. Jamshidi et al., “Microservices: The journey so far and challenges ahead,” IEEE Software, vol. 35, no. 3, pp.

24–35, 2018.

https://www.pubnub.com/guides/event-driven-architecture/

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

24955 ijariie.com 5188

4. Microsoft Azure, “Resiliency patterns,”

https://docs.microsoft.com/enus/azure/architecture/patterns/category/resiliency, 2017, [Online; last accessed on

February 25, 2020].

5. Microsoft Azure, “Retry Pattern,” https://docs.microsoft.com/en-us/ azure/architecture/patterns/retry, 2017,

[Online; last accessed on February 25, 2020].

6. F. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways in microservices,” arXiv preprint

arXiv:1609.05830, 2016.

7. D. Preuveneers and W. Joosen, “QoC2 Breaker: intelligent software circuit breakers for fault-tolerant distributed

context-aware applications,” Journal of Reliable Intelligent Environments, vol. 3, no. 1, pp. 5–20, 2017.

8. M. Nygard, Release It!: Design and Deploy Production-Ready Software. Pragmatic Bookshelf, 2007.

