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ABSTRACT

In this paper we derive a condition of transversality of two given hypersurfaces in pseudo-Riemnnaian
manifolds, along its boundary. This condition is given by the ellipticciy of the Newton transformations.
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1. INTRODUCTION

Let M™! an (n + 1) — dimentional connected Riemannian manifold and M™ be a closed hypersurface
embedded in M™*1, Denoting by x;, ..., x,, its principal curvatures.

For1 < k <n — 1, we define the k — mean curvature H, of M™ by

n
(k) Hy = 0,.(xq, ., X)-
Where (Z) = #ik), and g, : R®™ — R" are the elementary symmetric functions define by

O (X1, ey X)) = Z Xiy e Xipe

i <<y

For instance, H, = H is the mean curvature, H, is, up a constant, the scalar curvature and H,, is the Gauss
curvature.

The Alexandrov's sphere theorem [1] states that the round sphere is the only closed hypersurface embedded in
Rn+1.

This result is not true for the case of immersed (and non embedded) hypersurfaces [16,10].

Ros [13] later prove that the above result is true for hypersurfaces of constant H, for k>1, embedded in
Euledean space. The result was generalized by Montiel and Ros [11] for hypersurfaces with constant H,
embedded in HI**?* and $7}*1.

Koh [8] and Koh-Lee [9] later gived an analogue for the case of constant mean curvature ratio %
1

hypersurfaces.

In a recent work de Lima [5] gived a generalization of the Alexandrov theorem for the case of linear
Weingarten hypersurfaces embedded in Euclidean space. That is an hypersurface where H, and H are linearly
related. this means that for a and b > 0, H, = aH + b.
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In this work we consider a compact generalized Weingarten hypersurfaces (or (r,s) — Weingarten
hypersurface) embedded in R™** That is an hypersurface whose some of the k —mean curvatures H, are lineary
related. ie : for 0 < s < r < n, the relation

asHs + . +a,.H,. = b.
holds, where b > 0 and (as, ..., a,) # (0,...,0).
We prove the following result:
THEOREM

Let M™ be a closed, oriented (r, s) —Weingarten hypersurface embedded in R™** with non vanishing k —mean
curvature Hy,.

If we have one of the following cases:

i. For some integers r and s satisfying the inequality 0 < s < r < n — 1, the following linear relation
asHs + . +a,H, = b,

holds, where b > 0 and a; with (as, ..., a,) # (0,...,0).

ii. For some integer r where 0 < r < n — 1, the relation
HT = a1H1 + .- + ar_lHT_l,

holds, with (ay, ..., a._1) # (0,...,0).
Then M™ is the geodesic hypersphere.
2. MAIN RESULTS
The main result in this work is:
THEOREM 1.

Let M™ be a closed, oriented (r, s) —Weingarten hypersurface embedded in R™*? with non vanishing k —mean
curvature Hy.

If we have one of the following cases :

i For some integers r and s satisfying the inequality 0 < s < r < n — 1, the following linear relation
asHs + . +a.H, = b,

holds, where b > 0 and (ay, ..., a,) # (0,...,0).

ii. For some integer r where 0 < r < n — 1, the relation
H.=aH +-+a,_1H._4,

holds, with (ay, ..., a,_1) # (0,...,0).
Then M™ is the geodesic hypersphere.
PROOF.

@:M™ — R™*1 pe an n —dimentional closed hypersurface embedded in R™*1. Denoting by N the unit vector
field normal to M™.

i Since M™ is a compact and embedded in R™*1, it bounds a domain Q in R**1,9Q0 = M™,
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Moreover, always by compactness, M™ has at least an elliptic point, that is a point of M™, where all the principal
curvatures are positive. This imply that all H,. are positive functions.

For 1 < i < n, the Minkoswki formula is written as (See [6])

J-Hi_ldM + fHL-(<p,N)dM = 0.

mn mn
So

r

iai in_ldM:_Zai le-((p,N)sz— fb((p,N)dM.

mm i= M
On the other hand, since H, is strictly positif and by the inequality (See [11]) :

Hy_q.H, = Hy. Hy_,,

we obtain
T T
a le_ldM=Zai fH,_l LM,
. Hy
1= Mmn i= Mn
T
EZai _]Hl dM,
i= Mn .
>b J 1 aM
o H1 )
Mn

> b(n + 1)volQ.
Where the last inequality follows from theorem 1 in [13].

On the other hand, by applying the divergence theorem, it is not difficult to see that

— f b{p, N)dM = b(n + 1)volQ.

Mn

This imply that all the above inequalities are equals. In particular we obtain :

1
J- —dM = (n + DvolQ.
H,

Mn
Wich implies that M™ is the round sphere (See [6]).
ii. For 1 < r < n we have
er_ldM+ er(go,N)dM =0.
mn mn

So,
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Thus

J-Hr_ld,M =— er«p,N)dM,

mn" M™

r—1

Z_Zai in(QD'N)dM'

1= Mn

= Z a; f H;_1(p, N)dM.

J (Hr—l = rz_f aiHi—1((/’:N>) dM = 0.

Mn i=1

This gives

r—1

Hyy = ) aiHi1(@,N).

i=1

and by a reccursive argument, we obtain

H1 = C.HO = C.

Were C is a constant depend only on ay, ..., a,_4

Hence M™ is the round sphere.
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