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Abstract. 
 In [1] the residual power series method (RPSM), is used for finding the series solution of the time fractional 

Benjamin-Bona-Mahony-Burger (BBM-Burger) equation and 

the numerical solution of the BBM-Burger equation is calculated by Maple. In this paper, we use MATLAB 

2013  to find the numerical solution of this equation 
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1Introduction 

Today, fractional differential equations are more and more important in many fields, such as mathematics and 

dynamic systems [2,3]The persons who firstly proposed fractional differential equations were Leibniz and 

L’Hopital in 1695.Lakshmikantham and Vatsala [4] discussed the basic theory for the initial value problem 

involving Riemann-Liouville differential operators by fractional differential equations. Diethelm and Ford [5] 

proposed the analytical questions of existence and uniqueness of solutions by fractional differential equations. 

And many other academics studied different theories in fractional differential equations 

The BBM Burger equation can be written in time fractional operator form as [6] 
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where α is a parameter, which is the order of the time fractional derivative and is located in the range of (0,1]. 

The initial condition is 

                                                 2( ,0) sec ( )
4

x
u x h  

If 1,  the exact solution  [7] is 

                                                     2( , ) sec ( )
4 4

x t
u x t h   

Using residual power series method (RPSM) [8-24], [1] gives the analytic solution of (1). By exploiting this 

result, we will give a numerical solution of (1)calculated with MATLAB 

 

The rest of the paper is as follows. In Section 2, some basic definitions and theorems about the Caputo and 

modified residual power series method mentionned in [1] are introduced. In Section 3, We will recall the results 

obtained by [1] in the resolution of the time fractional BBM- Burger equation with residual power series method. 

Numerical results in Section 4. At last, the conclusion was drawn in Section 5. 
 
 
2 Basic definitions and theorems 

Definition 1 (see [1],[25]) 

Let ( ) :[0, [f t    be a function and 
*n , 0  .The Caputo fractional derivative is defined by 
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Theorem1 (see [1], [25]) 

The Caputo fractional derivative of thr power function satisfies 
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                                           0,qD x q    

Definition 2 (see [1],[8],[9]) 

A power series expansion of  the form 0

0
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 for 0 1n n     and 0 ,t t is called fractional 

power series about 0 ,t t where t is a variable and mc  are constants called the coefficients of the series 

Theorem 2 (see [1], [8]) 

Suppose that f has a fractional power series representation at 0t t  of the form 
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If 0 0( ) ( , ), 0,1,2,.....,mD f t t t R m    then  the coefficients mc  are given by the formula 
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convergence 

Definition 3 (see [1], [9]) 

A power series of the form  

, for 0 1n n     and 0t t ,   is called multiple power seies about 0t t  where t is a variable and mf  

are fonctions of x  called the coefficient of series. 

Theorem 3(see,[8],[9]) 

Suppose that ( , )u t x has a multiple power series representation at 0t t of the form 
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In order to get 
*( ), ,nf x n we look for the solution of 

( 1) Re ( ,0) 0n

t nD s x   

3  Solution of the Time Fractional BBM-Burger Equation by Residual Power Series Method 

In [1] the initial condition the Time Fractional BBM-Burger Equation is 2( ,0) sec ( )
2

x
u x h  

And the exact solution is 2( , ) sec ( )
4 4

x t
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4 Numerical results 

4.1  Programming 

The programming under MATLAB of results of the dicretizations above is : 
 

alpha=input('simulation time alpha=') 

[x,t] = meshgrid(-4:.1:4, 0.1:.2:0.4); 

exact=(sech(x/4-t/4)).^2 

f0=(sech(x/4)).^2 

f1=1/2.*(sech(x/4)).^2.*tanh(x/4)+1/2.*(sech(x/4)).^4.*tanh(x/4) 

f2=7/8.*(sech(x/4)).^6.*(tanh(x/4)).^2-1/8.*(sech(x/4)).^6 

+5/4.*(sech(x/4)).^4.*(tanh(x/4)).^2-1/4.*(sech(x/4)).^4 

+3/8.*(sech(x/4)).^2.*(tanh(x/4)).^2-1/8.*(sech(x/4)).^2 

f3=35/16.*(sech(x/4)).^8.*(tanh(x/4)).^3-11/6.*(sech(x/4)).^8.*tanh(x/4) 

+17/4.*(sech(x/4)).^6.*(tanh(x/4)).^3-13/8.*((sech(x/4))).^6.*tanh(x/4) 

+39/16.*(sech(x/4)).^4.*(tanh(x/4)).^3-19/16.*(sech(x/4)).^4.*tanh(x/4) 

+3/8.*(sech(x/4)).^2.*((tanh(x/4)).^3)-1/4.*(sech(x/4)).^2.*tanh(x/4) 

f4=385/64.*(sech(x/4)).^8.*(tanh(x/4)).^4-35/16.*sech(x/4).*tanh(x/4)-51/16 

.*(sech(x/4)).^8.*(tanh(x/4)).^2+153/16.*(sech(x/4)).^6.*(tanh(x/4)).^4 

+11/16.*sech(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^8.*tanh(x/4) 

.*(-1/2.*(sech(x/4)).^2.*tanh(x/4))-17/4.*sech(x/4).*(-1/2.*(sech(x/4)).^2 

.*tanh(x/4)).^6.*tanh(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^3+11/64 

.*(sech(x/4)).^8-193/32.*(sech(x/4)).^6.*(tanh(x/4)).^2+273/64 

.*(sech(x/4)).^4.*(tanh(x/4)).^4+13/8.*sech(x/4).*(-1/2*(sech(x/4)).^2).^6 

.*tanh(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4))-39/16.*sech(x/4) 

.*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^7.*tanh(x/4)+13/32.*(sech(x/4)).^6 

-53/16.*(sech(x/4)).^4.*(tanh(x/4)).^2+15/32.*(sech(x/4)).^2 

.*(tanh(x/4)).^4+19/16.*sech(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^5 

.*tanh(x/4)-3/8.*sech(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^5.*tanh(x/4) 

+19/64.*(sech(x/4)).^4-15/32.*(sech(x/4)).^2.*(tanh(x/4)).^2+1/4.*sech(x/4) 

.*tanh(x/4).*(-1/2.*(sech(x/4)).^2.*tanh(x/4)).^3-sech(x/4)-35/8 

.*(sech(x/4)).^8.*(tanh(x/4)).^4+105/16.*(sech(x/4)).^8.*(tanh(x/4)).^2 

.*(1/4-1/4.*(tanh(x/4)).^2)+11/8.*(sech(x/4)).^8.*(tanh(x/4)).^4-11/16 

.*(sech(x/4)).^.8.*(1/4-1/4.*(tanh(x/4)).^2)-51/.8.*(sech(x/4)).^.6 

.*(tanh(x/4)).^4+51/4.*(sech(x/4)).^6.*(tanh(x/4)).^2 

.*(1/4-1/4.*(tanh(x/4)).^2)+39/16.*(sech(x/4)).^6.*(tanh(x/4)).^2 -13/8 
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.*(sech(x/4)).^6.*(1/4-1/4.*(tanh(x/4)).^2)-39/16.*(sech(x/4)).^4 

.*(tanh(x/4)).^4+117/16.*(sech(x/4)).^4.*(tanh(x/4)).^2 

.*(1/4-1/4.*(tanh(x/4)).^2)+19/16.*(sech(x/4)).^4.*(tanh(x/4)).^2-19/16 

.*(sech(x/4)).^4.*(1/4-1/4.*(tanh(x/4)).^2)-3/16.*(sech(x/4)).^2 

.*(tanh(x/4)).^4+9/8.*(sech(x/4)).^2.*(tanh(x/4)).^2 

.*(1/4-1/4.*(tanh(x/4)).^2)+1/8.*(sech(x/4)).^2.*(tanh(x/4)).^2-1/4 

.*(sech(x/4)).^2.*(1/4-1/4.*(tanh(x/4)).^2).^2+1/16.*(sech(x/4)).^2 

u4=f0+f1.*((t.^alpha)/gamma(1+alpha))+f2.*((t.^(2.*alpha))/gamma(1+2.*alpha

))+f3.*((t.^(3.*alpha))/gamma(1+3.*alpha))+f4.*((t.^(4.*alpha))/gamma(1+4.*

alpha)) 

Z1=uexact 

 mesh(t,x,Z1) 

   Z2=u4 

 mesh(t,x,Z2) 

4.2 Graphics representation 

                                   

 
Figure 1 : 3D graphic of the exact solution u(x,t) when α=1 
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Figure 2 : 3D graphic of approximate solution u4(x,t) when α=1 

 

 
Figure 3 : 3D graphic of approximate solution u4(x,t) when α=0.8 
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Figure 4 : 3D graphic of approximate solution u4(x,t) when α=0.5 

 
Figure 5 : 3D graphic of approximate solution u4(x,t) when α=0.1 
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4.3 Comments of the results. 

We can compare the exact solution of the BBM-Burger equation with the analytical approximate solution by 

graphics . Figure 1 presents the exact solution, Figure 2 shows the approximate solution when α = 1. Figure 3, 

when α = 0.8.  Figure 4, when  α = 0.5.Figure 5 when  α = 0.5. We see that the approximate solution is close to 

the exact solution, when α approaches 1. So, we can conclude that, as parameter α increases, the graphics get 

closer and closer to the exact solution of the graphic. 

5. Conclusion 
In this paper, The time fractional BBM-Burger equation is calculated by MATLAB 2013. We can conculde that 

we have the similar results with the results in [1] 
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