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ABSTRACT 
In this paper we propose tensor-based methods for parameter estimations in bistatic MIMO radar. We first present 

the basic MIMO radar system parameters including the array steering matrix at the reception and the transmission, 

the fading coefficients matrix, the symbol matrix and the delay propagation matrix and second the useful PARAFAC 

models. Different approaches of modelisation are detailed considering instant or convolutive channel processing 

with raw and statistical data. Our proposed algorithm is based on the knowledge of a coding matrix using Khatri-

Rao products at the transmission. Using nested-PARAFAC model, two stages of alternating least squares algorithm 

allow us to estimate with accuracy all of the transmission parameters: DoA, DoD, fading coefficients and 

transmitted symbols. Several criteria such as RMSE, PSD, NMSE and SER are tested in the simulation section, 

where we can see that tensor-based methods provide efficiency due to the fact that they can take into account 

different kinds of diversity simultaneously. 

Keywords : Nested-PARAFAC, Khatri-Rao product, MIMO radar, ALS, estimation. 

 
1. INTRODUCTION 

Parameter estimation in wireless communication systems has caught great attention recently. Estimating the 

transmitted information with the right parameter of transmission is crucial in fields of radar. In [1],[2] and [3]-[5], 

classical methods based on eigenspace algorithms like multiple signal classification (MUSIC) and signal parameters 

via rotational invariance techniques (ESPRIT) are used to estimate the DoD (direction of departure) and DoA 

(direction of arrival). In [6], the pionner work of source separation with PARAFAC models [7] has been proposed. 

Then appeared several papers on channel estimation [8]-[11], spatial signature estimation [12]-[16] and parameter 

estimation [17]-[20].  

The main advantage with tensor modelisation lies in the fact that several diversities can be taken into account 

simultaneously. Effectively, the basic operations as Kronecker and Khatri-Rao product allows us to estimate the 

parameters of transmission only up to permutation and scale ambiguity factor under Kruskal condition [21]. 

Minimum a priori information helps remove those ambiguities. 

Throughout this paper, we propose a new PARAFAC-based approach to estimate the information and the 

parameters of transmission. Nested-PARAFAC decomposition [22] is used to model the received signal. At the 

transmitter, we assume a known coding matrix applied to the symbol matrix via Khatri-Rao product. At the receiver, 

the transmitted symbols, the fading coefficients, the DoD and DoA are estimated from the received signals. To deal 

with, we apply double alternating least squares (ALS) algorithm. 

The rest of this paper is organized as follow. Section 2 provides us the basic MIMO radar system parameters 

including the array steering matrix at the reception and the transmission, the fading coefficients matrix, the sycmbol 

matrix and the delay propagation matrix. The useful tensor deompositions are discussed in Section 3. Section 4 

details us the system model considering instant or convolutive channel processing with raw and statistical data. 
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Section 5 presents the system model using a coding matrix with Khatri-Rao product and the proposed algorithm. 

Numercal simulation results are given in Section 6 before we conclude in Section 7. 

2. MIMO radar system parameters 

Before modeling the received signals and proposing algorithms of estimation of the transmission paramaters, let’s 

first see, in this section, the different matrix systems which are taken into account in the tensorial modeling of a 

radar MIMO system. Those parameters are the factor matrices to estimate from the received signals. In other words, 

they are the spatial signature containing the angles of departure and of arrival, the Radar Cross Section (RCS) 

coefficients and the delay propagation matrix linked with the memory of the transmission channel. 

2.1 Receiver array steering matrix 

The We suppose narrowband planar waveforms impinging on a sensor array which is used as a receiver array in a 

radar MIMO system. The number of temporal samples  is grater than the number of elements  in the receiver 

array, which is itself greater than the number of targets : 

 
Thus, the signals from each target can be written as :  

 

For a uniform linear array (ULA), the first element in the array receiver is used as reference for modeling the 

recieved signal, is illustrated on Fig. 1. 

One can write : 

 

 

 

 

 

 
Fig. 1 Illustration of the angle of arrival 

 

(01) 

(02) 
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So we can obtain the vectorized form of the received signals :  

 

With 

. As  is the spatial frequency, we can deduce the 

expression of the steering vector at the recption such as :  

 

Where  

 avec . Thus, we have the following relations :  

 

 

The expression of the steering vector at the reception for the -th target according to the angle of arrival  is given 

by : 

 

And the steering matrix of the  targets in accordance with the receiver array is given by :  

 

2.2 Transmitter array steering matrix 

  By analogy with the former paragraph, let now  indicates the direction of departure of the -th target in 

accordance with the transmit array. 

The expression of the steering vector at the transmission for the -th target according to the angle of departure  is 

as : 

 

And the steering matrix of the  targets in accordance with the transmit array is given by : 

 

2.3 Fading coefficients matrix 

 Assuming  transmission blocks at each -th transmit antenna, the fading coefficients from the  targets may be 

gathered in a matrix such as : 

 

(05) 

(06) 

(03) 

(04) 

(07) 

(08) 

(09) 
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2.4 Delay propagation matrix 

In the presence of a convolutive transmission channel, the transission system takes into account the memory of the 

channel, which are translated by the delay propagation. If the finite support fini of the impulse response of the 

channe lis equal to  period symbols and that there are  targets in the area of interset, then the propagation delay 

matrix is given by :  

 

With generally 

  and  is the sampling period. 

2.5 Symbols matrix 

Let’s suppose a transmission composed by  transmission blocks and that each transmit antenna of a radar system 

has a training sequency formed by  symbols known at the reception :  

 

Thus the training sequency transitted  by the   transit antennas can be written as :  

 

3. Useful Tensor Decompositions 

3.1 PARAFAC decomposition 

A third-order tensor  can be represneted under its scalar form as : 

 

 Where 

 , ,  are the factor matrices and  is the tensor rank. A PARAFAC decomposition can also be 

written as a mode-n product such as: 

 

 Where  is an identity matrix of ordre-3 and dimension . The corresponding 1-mode, 2-mode and 3-mode 

unfoldings representations are given by : 

 

 

 

Figure 1 provides an illustration of the PARAFAC decomposition of a third-order tensor with rank  as a sum of 

outer products involving the columns of the corresponding factor matrices. 

(10) 

(11) 

(12) 

(13) 

(14) 
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Fig. 1 Illustration of a PARAFAC as a sum of outer products 

The unique estimation of the factor matrices by means of Alternating Least Squares (ALS) algorithm, up to 

permutation and factor scale ambiguity such as: 

 

Where  is a diagonal scalar factor and   is a permutation matrix of order- . 

 Each iteration is composed by three steps and in each step, a factor matrix will be estimated although the two others 

will be fixed at their former values. The ALS algorithm is represented in Table 1. The convergence in an ALS 

algorithm depends on the NMSE criteria, where the error of estimation should be inferior or equal to  

Table 1. ALS algorithm for a third-order tensor 

1 : for t = 0 

2 : Initialize  and  

3 : for t = t + 1 

4 : Obtain an estimation of  via the expression of  

 

5 : Obtain an estimation of  via the expression of  

 

6 : Obtain an estimation of  via the expression of  

 
7 : Repeat the steps 3-6 until convergence 

3.2 Nested-PARAFAC decomposition 

The nested – PARAFAC decomposition assumes that the  –th factor matrix  in a PARAFAC model is 

an unfolding of an additionnal PARAFAC decomposition. So, if  B(1) is the mode-1 unfolding of a 

tensor of order-3  

 

 then, 

 

 Where 

 
and  

 . 

 

(15) 

(16) 

(17) 
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The nested – PARAFAC decomposition of a tensor of  order-3  is given by the relations :  

 

 

The first equation is the external PARAFAC model and the second one is the internal PARAFAC model with factor 

matrices . The estimation of the factor matrices in a nested – PARAFAC model can be achived 

through two successive ALS. The first stage consists of estiamting th e factor matrices in the external PARAFAC 

and the second is performed by means of the estimation of the unfolding of the tensor  obtained previously. 

The details of an ALS – Nested – PARAFAC are presented in  Table 2. 

Table 2. ALS – Nested – PARAFAC algorithm  

First stage 

1 : for t = 0 

2 : Initialize  and  

3 : for t = t + 1 

4 : Obtain an estimation of  via the expression of  

 

5 : Obtain an estimation of  via the expression of  

 

6 : Obtain an estimation of  via the expression of  

 
7 : Repeat the steps 3-6 until convergence 

Second stage 

8 : Reconstruct the tensor  from  

9 : for t = 0 

10 : Initialize  and  

11 : for t = t + 1 

12 : Obtain an estimation of  via the expression of  

 

13 : Obtain an estimation of  via the expression of  

 

14 : Obtain an estimation of  via the expression of  

 
15 : Repeat the steps 9-14 until convergence 

4. System Model 

Suppose a system with  antennas at the transmission and  antennas at the reception. We assume that the 

channel between the transmitter and the receiver may be regarded as the superposition of  paths. At one path is 

associated a scatterer, which defines an angle of arrival  in accordance with the receive array and an angle of 

departure  in accordance with the transmit array. One transmission is composed by  blocs and the amplitude 

fading is assumed to be constant over a transmission data bloc but vary between two blocs. The long-term 

(18) 
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parameters   and  are constant over an entire transmission. The transmitter antenna has a training sequence of 

 symbols known at the reception, such as: 

 

4.1 MIMO radar with instant channel 

The training sequency is used through the I transmission blocks de transmissions, i.e : 

 

 The training sequency matrix transitted by the   antennas is given by:  

 

where . The  vectors of the training sequency are linearly independent. 

4.1.1 Processing through raw data 

The impulse response of the channel between the –th transmit antenna and the –th receive antenna for the  –

th transmission bloc is given by: 

 

Which can be viewed as the scalar component of the PARAFAC model of the channel tensor of order-3  

 with the parameters . 

The  -th signal received by the –th antenna during the  –th transmission bloc is given by: 

 

The matrix model of the channel is given by: 

 

And the matrix model of  the received can be written as: 

 

 

with  

. 

(24) 

(19) 

(20) 

(21) 

(22) 

(23) 
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Thus, the matrices empiling   blocks of  and  blocks of  can be respectively interpreted as the  –th matrix 

slices of the channel and received signal tensors. We then have :  

 

 
And 

 

 corresponds to the unfolding of the received signal tensor   of order-3 which follows a 

PARAFAC decomposition with the parameters . 

The two other unfolding representations are : 

 

 

We can use the ALS to estimate the matrices  ,  and . Then from the expression , one can obtain 

the estimation of the matrix  by the least square criteria if   is full column rank, which means . :  

 

Uniqueness and identifiability conditions. As the matrix  has a Vandermonde structure and  and  are random 

matrices, they are full rank. The Kruskal condition is defined by  or 

. In fact, as , then  because  is also 

full rank. The  Vandermonde structure in  allows us to suppress the scale factor in . And we can deduce the 

matrix permutation . 

As we estimate the matrices ,  and  by means of an ALS algorithm, we should have 

;  and  so that we can perform the pseudo-inverses. The main cost of the algorithm 

corresponds to the cost of the calculus of the SVD to find the pseudo-inverses, given by  

per iteration, plus tthe complexity of an additional SVD of the matrix  of order  

where we should have  to perform . 

Table 3. Algorithm for MIMO radar with instant channel processing through raw data 

1 :  

2 : By the ALS algorithm, obtain  ,   and  from the expressions of ,  et  

 3 : By the least sqaures criteria  

4.1.2 Processing through statistical data 

 The covariance matrix of the received signals can be written as: 

(25) 

(26) 

(27) 

(28) 
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Where  

Let’s define the matrix  as . Then one can have : 

 

Which corresponds to the unfolding representation of a third-order tensor  with the parameters 

. The two others unfolding representations are: 

 

 

 By means of the ALS algorithm, it is possible to estimate the factor matrices .  

Uniqueness and identifiability conditions. The condition of Kruskal defined by  is now 

equivalent to  as the matrices  (with Vandermonde 

structure),  (random) et  are full rank. In fact, for , so  because  is 

also full rank. The Vandermonde structure in the matrix  helps delete the scale factor in . Thus we can 

deduce the permutation matrix . 

 Through the expression , we can obtain the estimation of the matrix  by the least squares 

criteria, so we can write: 

 

if . 

After obtaining an estimation of the matrix , we shall estimate the matrix  as follow. Define 

where is the transmitted signals covariance matrix. Thus we have the relation : 

 

With  . 

We can have an estimation of the matrix . The elements  of the matrix  will be the values 

of the power  of the  –th source in the -th tramsission bloc.  

Uniqueness and identifiability conditions. We estimate the matrices ,  and  by the 

ALS algorithm, where the condition  should be satisfied to process with the pseudo – inverses. So the main 

cost of the corresponding algorithm is equal to the cost of the calculus of the SVD for the three pseudo – inverses, 

given by  per iteration, plus the complexity of an additional SVD of the matrix  

 of order  . 

The resolution of the equation  includes an estimation of the matrices  by 

means of an ALS where  et . Thus we should also take into account the cost of the calculus of the  

SVD to find the other three pseudo – inverses in the second ALS, given by  per iteration. 

(31) 

(29) 

(30) 

(32) 
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Table 4. Algorithm for MIMO radar with instant channel processing through statistical data 

1 :  

2 : Define  

3 : By the ALS algorithm, obtain  ,  et  from the expressions of ,  and  

4 : Obtain  by the LS criteria 

5 : By the resolution of the equation , obtain  

6 : Obtain  from the two conjugate expressions 

7 : Obtenir  par la relation  

4.2 MIMO radar with convolutive channel 

We suppose now the presence of a relative delay propagation  for the  -th way, which is constant over  

transmission blocks. The finite support of the channel impulse response is equal to  period symbols. The impulse 

response matrix with delay is given by : 

 

The matrix of the training sequence transmitted by the tranmsit antenna is such as:   

 

where . 

4.2.1 Processing through raw data 

The impulse response of the  –th tap of the channel between the -th transmit antenna and the -th receive 

antenna for the -th transmission bloc is given by: 

 

Which can be viewed as the scalar component of the PARAFAC model of the channel tensor of order-4 

 with parameters . 

The  –th received signal by the -th receiver antenna de for the -th transmission bloc is given by: 

 

 

The matrix model of the channel, by fixing the fisrt and the last dimension of the channel tensor may be written as : 

 

(35) 

(33) 

(34) 

(36) 

(37) 
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Empiling the blocks of , one can obtain :  

 

Where  

The corresponding matrix representation of the received signal is : 

 

with . 

Which corresponds to the unfolding representation of a third-order tensor  with the parameters 

. The two others unfoldings representation are: 

 

 

By means of the ALS algorithm, it is possible to estimate the factor matrices . At last, as , 

we can use the LS-KRP algorithm described in section ... in order to estimate the factor matrices and . 

Uniqueness and identifiability conditions. Knowing that the matrices  (with Vandermonde structure),  and  

(random) are full rank, the condition of Kruskal defined by  is equivalent to 

. In fact, as , thus  because  is also full 

rank. The Vandermonde structure in the matrice  helps delete the scale factor in . So, one can deduce the 

permutation matrix  in the estimations. Then through the espression of , we can obtain the estimation of the 

matrix by the least squares criteria:  where . 

As we estimate the matrices ,  and  by means of an ALS algorithm, we should have 

;  and  so that we can perform the pseudo-inverses. The main cost of the algorithm 

corresponds to the cost of the calculus of the SVD to find the pseudo-inverses, given by  

per iteration, plus tthe complexity of an additional SVD of the matrix  of order 

 where we should have  to perform . And the cost of the LS KRP algorithm to 

estimate  and  is given by . 

Table 5. Algorithm for MIMO radar with convolutive channel processing through raw data 

1 :  

2 : By the ALS algorithm, obtain ,   and  through the expressions of ,  and  

3 : Otain  by the least squares criteria 

4 : By the LS-KRP algorithm, obtain  and  from relation  

 

 

(38) 

(39) 

(40) 

(41) 
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4.2.2 Processing through statistical data 

The covariance matrix of the received signals can be written as: 

 

 

Where . Let’s define , then we 

can write: 

 

Which corresponds to the unfolding representation of a third-order tensor  with the parameters 

. The two others unfoldings representation are: 

 

 

By means of the ALS algorithm, it is possible to estimate the factor matrices . 

Uniqueness and identifiability conditions. The condition of Kruskal defined by  is now 

equivalent to  as the matrices  (with Vandermonde 

structure),  (random) et  are full rank. In fact, for , so because  is 

also full rank. The Vandermonde structure in the matrix  helps delete the scale factor in . Thus we can 

deduce the permutation matrix . 

 Through the expression , we can obtain the estimation of the matrix  by the least squares 

criteria, so we can write: 

 

if . 

After obtaining an estimation of the matrix , we shall estimate the matrix  as follow. Define 

where is the transmitted signals covariance matrix. Thus we have the 

relation : 

 

With   

We then can have an estimation of the matrix . The elements  of the matrix  will be the 

values of the power  of the  –th channel coefficient in the -th tramsission block. At last, as , we can 

use the LS-KRP algorithm described in section ... in order to estimate the factor matrices and . 

 

(42) 

(43) 

(44) 

(45) 

(46) 
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Table 6. Algorithm for MIMO radar with convolutive channel processing through statistical data 

1 :  

2 : Define  

3 : By the ALS algorithm, obtain  ,  and from the expressions of ,  and  

4 : Obtain  by the least squares criteria 

5 : By the resolution of the equation  , obtain  

6: Obtain by the two conjugate expressions 

7 : Obtain  via the relation  

8 : By the LS-KRP algorithm, obtain  and  from relation  

 

Uniqueness and identifiability conditions. We estimate the matrices ,  and  by the 

ALS algorithm, where the condition  should be satisfied to process with the pseudo – inverses. So the main 

cost of the corresponding algorithm is equal to the cost of the calculus of the SVD for the three pseudo – inverses, 

given by  per iteration, plus the complexity of an additional SVD of the matrix  

 of order  . 

The resolution of the equation  includes an estimation of the matrices  by 

means of an ALS where  et . Thus we should also take into account the cost of the calculus of 

the  SVD to find the other three pseudo – inverses in the second ALS, given by  per iteration. 

And the cost of the LS KRP algorithm to estimate  and  is given by . 

5. System model with coding matrix  

 Assume a radar MIMO system with respectively  and  elements at the transmission and the reception. 

 is th ematrix of  packets of  symbols multiplexed on the  transmit antennas. 

Assuming that the system is multipath, we suppose that  is the number of scatterers which corresponds to the 

number of paths or targets between each transit and receive antenna. 

The receiver array matrix is given by :  

 

with 

 

And the transmit array matrix is 

 

with 

 

(5.11) 

(47) 

(48) 

(49) 

(50) 
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Thus,  and  are respectively the direction of departure and of arrival of the -th path. We always assume that a 

transmission is composed by  blocks. If the vector of fading coefficients of the signal is such as 

, then the signal fading matrix la matrice is given by : 

 

Where  is the fading coefficient of the signal in the  –th block for the  –th target.. 

5.1 Coding matrix 

A space-time coding system based on Khatri-Rao product is applied through the source coding matrix  

 where  is the number of repetitions of each  paqckets of  symbols. The coded signals are the 

results of the Khatri-Rao product which spread symbols over  symbol periods. 

5.2 Received signal model 

The signal transmitted by the  transmit antennas de through the -th path is given by :  

 

Which corresponds to the PARAFAC decomposition of a tensor  with parameters , 

having the matrix represntation as : 

 

The two other unfoldings can be written as : 

 

 

If , then .  

For the -th transmission block, the signal received by the -th receive antenna is : 

 

Which can be viewed as the scalar representation of th received signals tensor of order -3  which 

follows a PARAFAC model with parameters . Considering the noiseless term and collecting the slices 

 through the third dimension, one can obtain the unfolding form of the received signal as : 

 

The two other unfoldings can be written as : 

 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 
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Finally, for the whole system,we obtain a nested – PARAFAC model such that :  

 

 

By means of an ALS nested-PARAFAC algorithm, one could estimate the factor . 

Uniqueness and identifiability conditions. ccording to Kruskal conditions, it is possible to estimate up to a 

permutation and a scale factor the matrices in the first stage of our ALS – nested -  PARAFAC algorithm if :  

 

 

Based on the least squares criteria, we can obtain the following estimations : 

 

 

 

As we perform right pseudo-inverses, the identifiability conditions ,  and  should be 

satisfied. 

For the second stage of the ALS – nested – PARAFAC,we can obtain essential unique estimations of the factor 

matrices if we have : 

 

 

And the identifiability conditions ,  and  should be satisfied to have :  

 

 

5.3 Proposed algorithm 

The matrices  and  have the Vandermonde structure and we will simulate the coding matrix  with a Fourier 

matrix. As for , its first row is filled with ones and the others are filled with symbols taken randomly from QAM 

alphabet. We define the matrix  by the repetition of rows containing random weight. Then we collect the slices 

 through the third dimension to obtain  . 

(62) 

(61) 

(60) 

(59) 

(58) 

(57) 
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In the ALS – nested – PARAFAC, we perform  Monte Carlo runs, where we process with  

initializations of the matrices  and we keep the one with the least error for each run, such that for the 

external ALS we calculate the error of reconstruction on the received signal unfolding :  

 

Table 7. Algorithm for MIMO radar with convolutive channel processing through statistical data 

1 :  

2 : Define  

3 : By the ALS algorithm, obtain  ,  and from the expressions of ,  and  

4 : Obtain  by the least squares criteria 

5 : By the resolution of the equation  , obtain  

6: Obtain by the two conjugate expressions 

7 : Obtain  via the relation  

8 : By the LS-KRP algorithm, obtain  and  from relation  

And for the internal ALS, we evaluate the error : 

 

As for the convergence criteria during the iterations, the loop is broken when we find an error inferior or equal 

  or if the maximal number of iterations   has been reached. 

The complexity of an ALS algorithm lies mainly on the cost of the calculus of the SVD during the factor matrices 

estimations. The cost of the calculus of  is given by the cost of the pseudo-inverse  which 

is equal to . And the complexity of the ALS – nested – 

PARAFAC is given by :  per itération, which corresponds to the complexity of the 

first stage, plus this of the second stage, which is of order :  per itération. 

6. Simulations and Results  

6.1. Comparison with other methods 

The results are the average of 1000 Monte Carlo simulations, in order to verify the efficiency of the proposed 

method. The simulation conditions are such as 3 targets, between the uniform linear array (ULA) at the 

transmission and the reception, having respectively the followind DoA and DoD ayant , 

 and . The scatterer coefficients satisfy  SwerlingI model and note 

that the bistatic MIMO radar is equipped by  transmit antennas and  receive antennas. 

We admit the SNR (Signal to Noise Ratio) to be the rate between the signal power and the noise power. To evaluate 

the system performance, we perform the test for two criteria: the first one consits of the mean quadratic error on the 

estimation of the DoA and DoD, i.e. the RMSE (Root Mean Square Error) defined by the relation : 

(63) 

(64) 
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Where  is the DoA estimation for the   – th Monte Carlo simulation and the  – th target. 

 : is the DoD estimation for the   – th Monte Carlo simulation and the  – th target. 

In fact we have the relations :  

 

 

With  

 

 

Where we define  and   respectively by :  

 

 

With and . 

 

The second measurement guves the PSD (Probability of Successful Detection), where a good detection of the target 

is accepted if the absolute error of all of the estimated angles are less than . 

We assume  and . To compare, we represent on Fig. 2 the RMSE of classical angle estimation 

methods ESPRIT, MUSIC and HOSVD, but also those of the tensorial approaches PARAFAC, QALS with the 

result of our proposed algorithm. As expected, the tensor-based mothods have better performance in terms of 

direction estimation in contrast with classical methods for low SNR. This is essentially due to the tensor gain. An 

other observation is on the fact that the PARAFAC-based algorithm excels the other estmators since least squares 

strategies rely on the array degrees of freedom. 

Fig. 3 illustrates the probability of successful detection curves. We can see that all of the methods provide a PSD of 

100% for high SNR. When the le SNR decreases, the PSD of each approach begins to decrease en certain points, 

which is the SNR threshold. The PARAFAC-based estimators have SNR thresholds smaller than others. Note that 

the proposed method based on nested-PARAFAC model has the same performance as thePARAFAC algorithm in 

the presence of white Gaussian noise. 

6.2. System performance 

In this subsection we present the performances of our SB receiver (semi-blind) modeled with nested-PARAFAC 

decomposition where we use Fourier matrix to simulate the coding matrix . We assume a MIMO radar system with 

 and  with a 4-QAM modulation for the symbol matrix. The results are still the average of  1000 

Monte Carlo simulations, where each simulation corresponds to an  independent realisation of the channel, symbols 

and noise. Fig. 4 presents the resluts for different configurations of the system : 

- space-time diversity with matrix method (STM) 

(65) 

(66) 

(67) 

(68) 
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- space-time diversity with tensor method (STT) 

- space-time with coding diversity with matrix method (STCM) 

- space-time with coding diversity with tensor method (STCT) 

On Fig. 4, we can notice that tensor-based methods with spatio-temporal and coding diversity reach better 

performance compared to matrix-based methods. Which justify the efficiency of tensor-based approach within 

multidimensional system. The more the SNR increases, the more the tensor-based algorithm improves. 

 

 

Fig. 2 RMSE vs SNR 

 

Fig. 3 PSD vs SNR 
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Fig. 4 SER vs SNR 

6.3. Parameter design influence 

Finally we evaluate the system performance under parameters influence. 

First, spatial diversity is translated by the increas of number of elements at the transmit and/or receive sides. Fig. 5 

and Fig. 6 sohw effectively that this diversity improves the system performance. Meanwhile, note that the reception 

diversity is more considerable than this at the transmission as the gad between the results on Fig.5 are greater.   

Second, the number of block transmissions allows us to introduce time diversity. The more we repeat the coded 

signals, the more the system has a better performance in terms of estimation of the transmitted information and the 

parameters of transmission. 

On Fig. 7, SB indicates our semi-blind receiver and ZF indicates zero forcing in the case where the channe lis 

perfectly known. Note that the proposed approach in this work provides results close to the ZF receiver. 

 

 

Fig. 5 NMSE vs SNR, Mr changing 



Vol-5 Issue-6 2019            IJARIIE-ISSN(O)-2395-4396 
   

10988 www.ijariie.com 311 

 

Fig. 6 NMSE vs SNR, Mt changing 

 

 

Fig. 7 SER vs SNR, I changing 

7. Conclusion 

To conclude, we have seen in this work the modelisation of the received signals in MIMO radar using instant and 

convolutive channel. We have exploited two kinds of data considering raw and statistical cases. We have proposed 

our semi-blind receiver based on the use of a known coding matrix at the transmitter. The nested-PARAFAC model 

of the received signal has led to the conception of our proposed algorithm based on a double ALS to estimate first 

the external parameters and then the internal ones. Simulations were divided into three categories: comparison with 

classical method for angle estimation, comparison between matrix-based approach and our semi-blind receiver, 

influence of parameter design. Numerical results has proved that tensor-based method has better performance 

compared with classical method; the semi-blind receiver is more efficient than the matrix-based methods; the 

increase of the number of elements at the transmitter and/or at the receiver with the variation of the number of 

transmission blocks affects the system performance. Space-time and coding diversity applied to the MIMO radar 

system with tensor approach allowed performance increasing. 
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