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ABSTRACT 

The system with an optimized k-means implementation will be performed on the graphics processing unit (GPU). 

NVIDIA’s Computing Unified Device Architecture (CUDA), available from the G80 GPU family onwards, is used as 

the programming environment. Emphasis is placed on optimizations directly targeted at this architecture to best 

exploit the computational capabilities available. Clustering involves partitioning a set of objects into subsets called 

clusters so that objects in the same cluster are similar according to some metric. Clustering is widely used in many 

fields like machine learning, data mining, pattern recognition and bioinformatics. 

 

K-means clustering is very popular clustering method used which uses distance as the similarity measure. K-means 

algorithm uses a set of K random objects from the available data set and performs distance computations. K-means 

chooses multiple models with the goal of refinement and faster convergence. The focus of the proposed system is to 

investigate different approaches to parallelism and then ensemble K-means algorithm on modern many core 

hardware. The many core hardware involves GPUs and CPUs backed by the CUDA software stack. The main 

feature of the proposed system is that it makes use of the large computing capacity of the hardware by minimizing 

the amount of data access. 
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1. INTRODUCTION 

1.1 Clustering 

Clustering can be considered the most important unsupervised learning problem. So, as every other problem of this 

kind, it deals with finding a structure in a collection of unlabelled data. A cluster is therefore a collection of objects 

which are "similar" between them and are "dissimilar" to the objects belonging to other clusters. Clustering is very 

crucial field of research having many real time applications. These applications include Data Mining, Pattern 

recognition, Image analysis, Bio-informatics, Machine Learning, Voice mining, Image processing, Text mining, 

Whether report analysis etc. 

 

1.2 K-Means Clustering 

K-means is a typical clustering algorithm and it is widely used for clustering large sets of data. A good clustering 

method produces high-quality clusters to ensure that the inter-cluster similarity is low and the intra-cluster similarity 

is high, in other words, members of a cluster are more like each other than they are like members of a different 

cluster. 

 

1.3 GPU 

A graphics processing unit (GPU), also occasionally called visual processing unit (VPU), is a specialized electronic 

circuit designed to rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer 

intended for output to a display. GPUs are used in embedded systems, mobile phones, personal computers, 

workstations, and game consoles. Modern GPUs are very efficient at manipulating computer graphics and image 

processing, and their highly parallel structure makes them more effective than general-purpose CPUs for algorithms 
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where processing of large blocks of data is done in parallel. In a personal computer, a GPU can be present on a 

video card, or it can be on the motherboard or in certain CPU’s on the CPU die. 

 

1.4 CUDA 

CUDA stands for Compute Unified Device Architecture, it is a parallel computing platform and programming 

model created by NVIDIA and implemented by the graphics processing units (GPUs) that they produce. CUDA 

gives developers direct access to the virtual instruction set and memory of the parallel computational elements in 

CUDA GPUs.  

 

Using CUDA, the GPUs can be used for general purpose processing (i.e., not exclusively graphics); this approach is 

known as GPGPU. Unlike CPUs, however, GPUs have a parallel throughput architecture that emphasizes executing 

many concurrent threads slowly, rather than executing a single thread very quickly. 

 

2. RELATED WORK 
 

S.A. Arul Shalom et al. [1] present an efficient implementation of the k-means clustering algorithm in the GPU. 

They realize this by using the multipass rendering and multi-shader capabilities of the CPU. This is done by 

maximizing the use of textures and minimizing the use of shader program constants. In this implementation they 

have minimized the use of GPU shader constants thus improving the performance as well as reducing the data 

transactions between the CPU and the GPU. Handling data transfers between the necessary textures within the GPU 

is much more efficient than using shader constants. This is mainly due to the high memory bandwidth available in 

the GPU pipeline. Since all the steps of k-means clustering could be implemented in the GPU, the transferring of 

data back to the CPU during the iterations is avoided. The programmable capabilities of the GPU have been thus 

exploited to efficiently implement k-means clustering in the GPU. Implementation is done using OpenGL as the 

Application Programming Interface (API), and the operational kernels are invoked via shader programs, using the 

Graphics Library Shading Language (GLSL). The Single Instruction Multiple Data (SMID) technique is employed 

to achieve data or vector level parallelism in the fragment processor. 

 

Reza Farivar et al. [2] have used two types of data structures. They have implemented the CUDA-accelerated k-

means algorithm in three distinct stages of operation. The 1st stage initializes the CUDA hardware, allocates the 

appropriate host and device memory storage areas, estimates the initial set of centroids and loads the data set into the 

on-board memory of the graphics card. The second part, which is the workhorse of the program, is the kernel 

running on the GPU device. Each thread will process a single data point, and compute the distance between the point 

and each centroid. The third part of the program relabels points to the nearest centroid, and computes the next 

centroid estimation. This part is executed serially in the host. The data set consists of a one dimensional array of 

unsigned long integers, which are 4 bytes in size per point. 

 

BAI Hong-Tao et al. [3] have proposed a novel Single Instruction Multiple Data (SIMD) architecture processors 

(GPUs) based k-means algorithm. In this algorithm, in order to accelerate compute-intensive portions of traditional 

k-means, both data objects assignment and k centroids recalculation are off-loaded to the GPU in parallel. They have 

implemented this GPU-based k-means on the newest generation GPU with Compute Unified Device Architecture 

(CUDA). The numerical experiments demonstrated that the speed of GPU-based k-means could reach as high as 40 

times of the CPU-based k-means. 

 

Mario Zechner et al. [4] have proposed the algorithm which realized in a hybrid manner, parallelizing distance 

calculations on the GPU while sequentially updating cluster centroids on the CPU based on the results from the 

GPU calculations. The CPU takes the role of the master thread. As a first step it prepares the data points 

and uploads them to the GPU. As the data points do not change over the course of the algorithm they are only 

transferred once. The CPU then enters the iterative process of labelling the data points as well as updating the 

centroids. Each iteration starts by uploading the current centroids to the GPU. Next the GPU performs the labelling. 

The results from the labelling stage, namely the membership of each data point to a cluster in form of an index, are 

transferred back to the CPU. Finally the CPU calculates the new centroid of each cluster based on these labels and 

performs a convergence check. Convergence is achieved in case no label has changed compared to the last iteration. 

Optionally a threshold difference check of the overall movement of the centroids can be performed to avoid iterating 

infinitely for some special cluster configurations. 
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Ren Wu et al. [5] have proposed parallel k-means clustering using GPUs to accelerate clustering of very large data 

sets. They investigate if GPUs can be useful accelerators even with very large data sets that cannot fit into GPUs on-

board memory. They have used MineBench as their baseline for performance comparison and used randomly 

generated data sets. They have introduced Multi-tasked Streaming for large datasets 

 

Kai J. Kohlhoff et al. [6] have proposed how K-means can be fully implemented on massively parallel general 

purpose computing platforms without putting limits on the number of data points, clusters, or dimensionality of the 

data other than the available GPU main memory, while avoiding thread divergence and maintaining near-optimal 

GPU occupancy. 

  

3. DETAILS OF PROPOSED SYSTEM 

The focus of the proposed work is to show the advantages by performing K-Means algorithm on GPU for 

optimization. Clustering operations performed as fundamental tools in many applications hence to increase speed of 

application require reducing execution time of Clustering algorithm. 

 

3.1 Basic Building Block of System 

 

The Figure below shows the architectural view of proposed system and flow of execution. 

 

 

Fig -1: Architecture of Proposed System.  

 

3.1.1 Calculate Distance 
Distance calculation is the first step of K-Means clustering. In this step we calculate distance between each point and 

all the cluster centroids. So for example we have N points and K cluster centroids then, The distance from each of  N 

points i.e (n1, n2, n3, … , nn) to each of K centroids i.e (k1, k2, …, kn) will get calculated. 

 

3.1.2 Assign Points to Centroids 
Centroid assignment is Second step of K-Means clustering. After Calculation of distance step finishes the data is 

passed for centroid assignments. In these step N points gets assigned to K cluster centroid points on the basis of the 

distance calculated in previous step. This step will create new clusters after completion of point assignment. 

 

3.1.3 Calculate Mean Value and Generate New Centroid 
Once all the points get assigned to their respective closest centroid and new clusters get generated. The next step is 

to calculate the mean of cluster and make it as new centroid of that cluster. 
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3.1.4 Assign Points to Centroids 
After new centroid calculation gets completed the last step is to check if the centroids from last iteration and this 

iteration differ. If there is difference in the centroids then we have to repeat all above steps by calling Calculate 

Distance step. If the centroids are same then we have to stop. And copy output data to disk. 

 

 

Fig -2: Flow diagram of Proposed System.  

 

3.2 Optimization using Shared Memory 

 

The shared memory is read-and-write memory that resides physically on the GPU. It is placed as opposed to off-chip 

DRAM, so it is much faster than global memory. The threads in only one block are allowed to access shared 

memory. Threads in one block do not have access to shared memory in different blocks. This type of memory 

provides an excellent speed-up because threads in one block communicate with each other and use share memory. In 

the system, K-means algorithm use shared memory for optimization. In this system processing data is stored on to 

shared memory. Shared memory has less latency than global memory. Data is stored in shared memory by using 

shared keyword. At the time of processing algorithm, accessing data from shared memory by simply call variable 

name. 
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3.3 Thread Control 

 

Graphics processing unit is based on the thread level parallelism to maximum exploitation of its function units 

where each processor on GPU works as single instruction multiple data. For obtaining this, kernel function is call 

from host and execute on GPU device. Here computation is done by large number of threads, organized in thread 

blocks. To achieve high performance require GPU as active as possible [20]. 

 

4. Experimental Result  

Experiments are performed On Intel Core i3 machine with Nvidia gpu is used with CUDA 6.0 and Ubuntu 12.04 

linux distribution. The performance behavior is studied depending on change in number of clusters. The 

performance of K-Means is also recorded for parallel implementations. The results are shown in form of Tables and 

Charts as follows. 

 

 

4.1 The results when number of cluster = 10 
 

Table -1: Results with Number of Clusters = 10 

 

Number of Points Base System Proposed System 

100 3.867 ms 4.382 ms 

1000 13.943 ms 12.687 ms 

5000 116.315 ms 57.766 ms 

10000 483.94 ms 107.078 ms 

50000 4221.0 ms  210.993 ms 

100000 13315 ms 359.776 ms 

 

 

Fig -1: Line Chart Showing Results with Number of Clusters = 10 
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4.2 The results when number of cluster = 20 
 

Table -2: Results with Number of Clusters = 20 

 

Number of Points Base System Proposed System 

100 15.67 ms 22.095 ms 

1000 130.883 ms 37.412 ms 

5000 924.227 ms 115.035 ms 

10000 3454 ms 282.417 ms 

50000 41012 ms 636.716 ms 

100000 77712 ms 1220 ms 

 

 

Fig -2: Line Chart Showing Results with Number of Clusters = 20 

 

5. CONCLUSIONS  

This system provides a parallel approach for clustering algorithm that is K – Means algorithm. In this system the 

fully parallel k-means clustering algorithm is proposed. As the number of cluster and data points increase it gives 

better performance. This implementation wok effectively for energy efficient and low cost system enabled with 

GPU card for high speed up. The efficient use of all the key feature of CUDA to gain significant performance is 

done. Here, comparative study between proposed system and existing system is done. From the above results we 

conclude that, proposed implementation of K-Means algorithm is comparatively fast in execution speed.  

 

Every time a new GPU is introduced with improved Computational features, the horizon further advances. As future 

work, this application can be ported to multiple GPU devices that will run in parallel. As the number of GPU cards 

used increases, a proportional speed up of the application is expected. Also we can implement parallelism in other 

popular algorithms in different areas. 
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