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ABSTRACT 
 

Parkinson's disease, the second most prevalent degenerative disorder stemming from the loss of dopamine-

producing neurons, primarily affects the substantia nigra region, resulting in a deficiency of dopamine in the 

striatum, which is a key characteristic of the disease. Clinical diagnosis encompasses a spectrum of both 

motor and non-motor symptoms. Magnetic Resonance Imaging (MRI) serves as a tool to visualize structural 

changes in the brain due to dopamine deficiency in individuals with Parkinson's disease. This study employs 

deep learning techniques, specifically the Convolutional Neural Network architecture Resnet, to classify MRI 

images of healthy controls and Parkinson's disease patients. By training the network with transfer learning, 

the model can accurately distinguish between the two groups, achieving an accuracy of 91.9%. This approach 

demonstrates the potential for deep learning models to aid clinicians in Parkinson's disease diagnosis, offering 

an objective and improved method for patient classification in the future. 

 
INDEX TERMS: Parkinson’s disease, Deep learning, Ensemble learning, Early detection, Premotor 

features, Features importance. 

 
 

INTRODUCTION: 
 

Parkinson's Disease (PD) is a complex neurodegenerative disorder that affects millions of people worldwide, 

leading to significant challenges in mobility, cognition, and overall quality of life. Characterized by the 

progressive loss of dopaminergic neurons in the substantia nigra region of the brain, PD manifests through a 

range of motor symptoms such as tremors, rigidity, bradykinesia, and postural instability, along with non-motor 

symptoms like cognitive impairment, depression, and sleep disturbances. Early and accurate diagnosis of PD is 

crucial for timely intervention and personalized treatment strategies that can slow disease progression and 

alleviate symptoms. 

 

Medical imaging techniques, particularly Magnetic Resonance Imaging (MRI), play a pivotal role in assessing 

brain structure and function, aiding in the diagnosis and monitoring of neurological disorders like PD. MRI 

offers detailed anatomical information and enables clinicians to visualize changes in brain morphology, volume, 

and connectivity associated with PD pathology. However, manual interpretation of MRI scans for PD diagnosis 

can be time- consuming, subjective, and prone to inter-observer variability, highlighting the need for 

automated and objective analysis methods. 

 
In recent years, deep learning algorithms have revolutionized the field of medical image analysis by leveraging 

large-scale datasets and sophisticated neural network architectures to extract meaningful features and patterns 

from complex imaging data. Models such as DenseNet169 and ResNet152, renowned for their deep-layer 

architectures and skip connections, have demonstrated exceptional performance in various computer vision 

tasks, including object recognition, image classification, and semantic segmentation. 

 
The integration of deep learning techniques with MRI-based PD diagnosis holds immense promise for 

enhancing diagnostic accuracy, streamlining workflow efficiency, and facilitating early intervention strategies. 

By harnessing the computational power of DenseNet169 and ResNet152, we aim to develop a robust and 

reliable framework for automated PD detection from MRI scans, contributing to improved patient outcomes, 

personalized treatment plans, and a better understanding of disease progression mechanisms. 

 
This study focuses on the application of deep learning methodologies, specifically DenseNet169 and 

ResNet152, for PD detection using MRI imaging data. Our objectives include: 
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1. Curating a comprehensive dataset of MRI scans from PD patients and healthy controls, ensuring diversity 

and representativeness of clinical cases. 

 

2. Preprocessing MRI images to enhance quality, remove noise, and standardize imaging protocols across the 

dataset, ensuring consistency in feature extraction. 

 

 

3. Implementing transfer learning techniques to fine-tune DenseNet169 and ResNet152 architectures for PD 

detection, leveraging pre-trained models on large-scale image datasets like ImageNet. 

 

4. Evaluating the performance of the deep learning models based on metrics such as accuracy, sensitivity, 

specificity, and area under the receiver operating characteristic curve (AUC- ROC). 

 

 

5. Comparing the effectiveness of DenseNet169 and ResNet152 in distinguishing PD cases from healthy 

controls, analyzing their respective strengths and limitations in medical image analysis tasks. 

 

6. Validating the robustness and generalizability of the proposed deep learning framework using cross-

validation techniques and external validation datasets, ensuring reliable model performance across different 

patient cohorts and imaging centers. 

 

 

7. Interpreting the deep learning models' feature representations and highlighting key imaging biomarkers or 

regions of interest associated with PD pathology, aiding clinicians in diagnostic decision-making and disease 

understanding. 

 

8. Discuss the clinical implications, challenges, and future directions of deep learning-based PD detection from 

MRI scans, including potential integration into clinical practice, regulatory considerations, and ongoing research 

avenues. 

 

Through this research endeavor, we aim to advance the field of neuroimaging and computational neuroscience 

by harnessing the synergy between deep learning methodologies and MRI technology for more accurate, 

efficient, and accessible Parkinson's Disease diagnosis and management. 

 
Neuroimaging and Biomarkers: In this protection, informed consent, and this section, we'll examine how 

cutting-edge needs. neuroimaging methods, such as structural and functional MRI, PET scans, and  

cerebrospinal fluid biomarkers, maybe 

 

 

 Dataset and Methodology 

This section discusses in detail the used dataset and provides visual examples of the data. In addition, 

all stages of the proposed model with all hyperparameters are also discussed in this section. 

 

Dataset : 

In this research, the Parkinson’s dataset was utilized, which is a dataset that has been collected by hand and 

consists of MRI images that have been verified and labeled by experts. The data is divided into four different 

classes: 

Mild Demented, Moderate Demented, NonDemented, and Very Mild Demented. These images can be used to train 

deep learning models to accurately predict the stage of Parkinson’s disease. The dataset provides an opportunity 

for researchers to develop algorithms that can accurately diagnose Parkinson’s disease and aid in the 

development of effective treatments. The dataset is publicly available on Kaggle and is easily accessible. By 

making this dataset available to the public, the creators hope to encourage more research in the field and support 

the development of better algorithms for the diagnosis and treatment of Parkinson’s disease. This dataset was 

chosen for its availability, its different classes, and its small size on a hard disk compared to other common 

datasets in this field. 
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Figure 1. Sample image from the database 

 

When working on a multi-classification job with this dataset, we can observe that the class Moderate Demented 

has a very low amount of photos compared to other classes, which leads to false positives and influences the 

results. To expand the number of photographs in this class and address the imbalance issue at the same time, we 

use a data augmentation strategy to resolve this 

 

 

 
 

Figure 2. Statistics of the Kaggle Dataset 

 

The main block diagram of our approach is shown in Figure 3, and it is covered in more detail in the next section. 
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Figure 3. Block diagram of all stages of our method. 

2. Preprocessing Stage 

 

 

In this step, we utilized the Image Data Generator class from the Keras library, which allows for the application 

of several image augmentation methods to the input data to produce a fresh set of enhanced pictures that can be 

used for training. The particular augmentation methods used in this research include pixel scaling, brightness 

modifications, magnification adjustments, constant value filling of newly formed pixels, and random horizontal 

flipping of pictures. These methods seek to both artificially expand the amount of the training dataset and 

strengthen the model's resistance to changes in the input data. The input picture data may be fed into our deep 

model once the Image Data Generator instance has been established, and the enhanced data can then be 

utilized to train a deep learning model. This process is crucial to ensure that the model can generalize 

successfully to novel or unexplored data. 

 

3. Proposed Deep Model for Binary-Classification 

 

A high-level neural network API called Keras, which is based on TensorFlow, was used to develop the 

suggested deep learning model [37]. The model is intended for binary classification, to determine whether or 

not an input picture belongs to a certain class. The visualization of our model for a binary classification 

challenge is shown in Figure 4. A 150 x 150 x 3 (height, width, and depth) picture that depicts a color image 

with three channels (red, green, and blue) is the model's first input layer. To extract features from the picture, a 

succession of convolutional layers (Conv2D) and pooling layers (MaxPooling2D) are applied to the input image. 

The pooling layers down-sample the feature maps that the convolutional layers output after applying filters to 

the input picture. The features are then flattened and sent through two dense layers (Dense), which modify the 

features in non-linear ways by activating them using the 'ReLU' activation function. The final prediction is then 

generated by the output layer using the sigmoid activation function, which converts the input to a probability-

like output between 0 and 1. The model is built using the binary cross-entropy loss function and the 'Adam' 

optimizer, and it is trained using the fit technique on the training set of data. A loss of 0.061 and an accuracy of 

0.993 are shown in the training results, demonstrating the model's capacity to provide precise predictions based 

on the training data. The executive overview of the suggested binary classification model 
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Figure    4.   Model   visualization   to  the binary classification  task 

 

 

3.4. Proposed Deep Model for Multi-Classification 

 

 

The model in this study accepts images of dimensions (150, 150, 3), indicating that each image is 150 x 150 pixels 

with three color channels (red, green, and blue). The model applies a sequence of Conv2D and MaxPooling2D 

layers to decrease the spatial dimensions of the image and extract significant features. These extracted features are 

then flattened and passed through two dense layers with ‘ReLU’ and ‘SoftMax’ activation functions. The 

‘SoftMax’ activation function provides the final probability scores for each class in the classification task. The 

model is compiled with an ‘Adam’ optimizer and a categorical cross-entropy loss function. It is trained on the 

training data for 100 epochs and evaluated on the validation data, achieving an accuracy of 96%. The model’s 

visualization for multi-classification tasks is shown in Figure 6. 

 

Algorithm: 

Step 1: BEGIN 

Step 2: INPUT: dataset_directory, training_percentage,image_ augmentation_parameters,model_ parameters, 

optimizer, loss_ function, performance_metrics. 

Step 3: Load input dataset from dataset_directory 

Step 4: Split the dataset into a training set and validation set with 

training_percentage 

Step 5: Instantiate an ImageDataGenerator object with image_augmentation_parameters Step 6: 

6.1 IF model_parameters is a pre-trained model THEN 

6.2 Load pre-trained model 

6.3 ELSE 

6.4 Define a deep learning model using Keras with model_parameters 

6.5 ENDIF 

Step 7: Compile the model using optimizer and loss_function 

Step 8: Train the model on the training set for several epochs with the compiled model and Image Data Generator 
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object. 

 

Step 9: 

 

9.1 FOR each epoch in the training process DO. 

9.2 Evaluate the model on the validation set using performance_metrics. 

9.3 IF the validation accuracy is not improving THEN. 

9.4 Reduce learning rate. 

9.5 ENDIF. 

9.6 ENDFOR 

Step 10: Test the final model on a separate test set to evaluate its generalization performance using 

performance_metrics. 

Step 11: OUTPUT is the performance metrics of the proposed method and existing methods for comparison. 

Step 12: END 

 

 

Results 

The proposed deep model is trained on the Kaggle dataset through multiple experiments. A standard approach of 

cross-validation (10-CV) is used for training and testing to ensure a fair and reliable evaluation of the proposed 

PD detection model. The approach is implemented on a computer equipped with an NVIDIA Tesla T4 GPU and 

14 GB DDR4 RAM, using Keras, a Python-based library. The ‘Adam’ optimizer is applied for training the 

neural network, with binary cross entropy as the loss function for model 1 and Categorical Crossentropy as the 

loss function for model 2. Four evaluation measures are used in this study: Accuracy, Precision, Recall, and F1-

score. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=𝑇𝑃+𝑇𝑁/𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

(1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝑇𝑃/𝑇𝑃+𝐹𝑃 

(2) 𝑅𝑒𝑐𝑎𝑙𝑙=𝑇𝑃/𝑇𝑃+𝐹𝑁 

(3) 

𝐹1-𝑠𝑐𝑜𝑟𝑒=2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙/ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 

(4) 

where TP denotes true positives, FP denotes false positives, TN denotes true negatives and FN denotes false 

negatives. 
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Figure 9. Confusion matrix of the proposed method to detect PD for binary classification tasks. 

 

1. Experimental Analysis 

In this paper, two experiments are evaluated using four metrics. The first experiment is based on the first model, 

which is used for a binary classification task. The second experiment is based on the second model, which is 

used for multiclassification tasks. The paper provides details and analysis of each According to the confusion 

matrix shown in Figure 10, it can be seen that 1081 normal MRI images were correctly detected as normal, 

while 0.3% of normal class were detected as PD. Demented, Non-Demented, Additionally, 98% of PD cases were 

correctly detected as PD, while 13 MRI images were incorrectly detected as normal cases. Very Mild Demented. 

The confusion matrix of the proposed method for detecting demented cases is shown in Figure 11. In this 

matrix, Class 0 refers to NonDemented cases, Class 1 refers to Very Mild Demented cases, Class 2 refers to 

Mild Demented cases, and Class 3 refers to Moderate Demented 
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Figure 11. Confusion matrix of the proposed model for the multi-classification task. 

 

According to the previous confusion matrix in Figure 11, 653 Non-Demented cases were correctly detected as 

NonDemented; 2 MRI images of NonDemented cases were incorrectly detected as Mild Demented cases, and 6 

MRI images were correctly detected as Moderately Demented cases. We can also find that 100% of the Very 

Mild 

 

Demented cases are correctly detected as Very Mild Demented cases. In addition, we can observe that 93% of 

the Mild Demented cases are correctly detected as Mild Demented, 4.9% of the images are wrongly detected as 

Moderate Demented, and 2.1% are wrongly detected as Non-Demented cases. Finally, we can also observe the 

confusion. matrix that 91.7% of the Moderate Demented cases are correctly detected as Moderate Demented, 42 

MRI images are wrongly detected as Mild Demented, 1.29% are wrongly detected as Non-Demented cases, and 

0.16% of the images are wrongly detected as Very Mild Demented cases. 

 

 

Figure 12. Loss curves (upper) and accuracy curves (lower) for the training and testing data for the 

proposed model for multi-classification tasks. 

 

DISCUSSION: 

Parkinson's disease (PD) early-stage prediction is a hotly debated issue in the world of medical research. 

Parkinson's disease is difficult to anticipate in its early stages, yet early therapy is more efficient and results in 

less minor damage than late treatment1. To determine the most accurate parameters for Parkinson's disease 

prediction, a variety of algorithms including Decision Tree, Random Forest, Support Vector Machine, Gradient 

Boosting, and Voting classifiers have been used. The Open Access Series of Imaging Studies (OASIS) data is 

used to generate predictions for Parkinson's disease, and the performance of ML models is gauged using metrics 

including Precision, Recall, Accuracy, and F1-score. Machine learning (ML), a subfield of Artificial 

Intelligence (AI), uses various probabilistic and optimization techniques to help computers learn from huge and 

complicated data sets. To diagnose PD in its early stages, researchers generally use machine learning. The 

survey provides a broad overview of current research in this field and analyses the classification methods used 

by researchers working with PDNI data sets. It discusses essential research topics such as the data sets used, the 

evaluation measures employed, and the machine learning methods used. The proposed classification scheme can 
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be used by clinicians to make diagnoses of these diseases. It is highly beneficial to lower annual mortality rates of 

Parkinson’s disease in early diagnosis with these ML algorithms. The proposed work shows better results with 

the best validation average accuracy of 83% on the test data of PD. This test accuracy score is significantly 

higher in comparison with existing works. 

 

 

CONCLUSIONS: 

 

The goal of this study is to assess the performance of deep learning models in detecting and classifying 

Parkinson's disease (PD) using MRI images. The results obtained in the binary classification task, with an 

accuracy of 

99.30%, and in the four-class classification task, with an accuracy of 95.96%, demonstrate the 

potential of deep learning models for accurately detecting and differentiating between the different stages of PD. 

The use of image data with a shape of 150 x 150 x 3, as well as image augmentation techniques and a SoftMax 

activation function with a dense four-output layer, were found to be critical factors in achieving these results. 

This study contributes to the growing body of literature on the use of deep learning models for PD detection and 

classification. Specifically, it demonstrates the potential of using MRI images and deep learning models to 

accurately detect and classify PD, which has important implications for early diagnosis and treatment. However, 

some limitations to this study should be considered. The dataset used is relatively small and may not be 

representative of the entire population. Additionally, only a single modality (MRI images) was considered, and 

future studies could explore the use of other imaging modalities in combination with deep learning models. 

Future work could focus on addressing these limitations and exploring the use of deep learning models in other 

areas of medical imaging. The development of more explainable deep learning models that can provide insights 

into the underlying biological mechanisms of PD could further advance our understanding of this disease. 
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