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ABSTRACT 

Optical Coherence Tomography (OCT) is a non-invasive imaging technique for micron-scale biological media 

with the most notable application in the field of ophthalmology. An expansion of the use of the OCT in question 

is proposed in this article by inserting a dictionary learning algorithm which is none other than the K-SVD. The 

objective of this article is therefore the improvement by different aspects of the OCT's performance thanks to the 

K-SVD algorithm. To do this, we have integrated the K-SVD algorithm in the OCT giving so many solutions to 

the previous problems given the simulations that follow illustrating the performance of this invention 

Keywords: compression, tomography, K-SVD algorithm, optical coherence. 

___________________________________________________________________________ 

1. INTRODUCTION 

The temperature is the physical quantity very indispensable in the fields of productions. And most of the In 

the world of optical imaging, optical coherence tomography is a world in its own right. This imaging technique 

is based on low coherence light interferometry, developed in the early 1990s, and continues to develop, diversify 

and specialize, constantly finding new areas of application. It is within this framework of imaging technology, 

still in full swing, that our article consisting of the demonstration of the "Performance of the K-SVD algorithm in 

optical coherence tomography" is integrated. After having explained the compression principle, we will report 

the K-SVD algorithm, then the OCT technique, then the evaluation parameters of the compression performance. 

At the end, we do some simulations that demonstrate the evaluation of the performance of this technique. 

2. PRINCIPALE OF COMPRESSION 

We detail through this paragraph the main ideas and fundamental principles leading to different compression 

methods. The methods of compression vary according to the types of images (natural, medical, satellite, etc.) and 

the targeted applications (internet, storage, etc.) besides the requirements in terms of quality [1] [2]. The 

importance of this compression remains the concentration of the energy on few coefficients, so as to create large 

ranges of zeros after quantification. Compression reduces the number of data to be transmitted. For some signals, 

it also makes it possible to eliminate existing redundancies in order to reduce the amount of information 

necessary for their representations. There are two main compression chains [3] 
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2.1. The lossless compression chain (reversible): 

The values of the compressed image are not dependent on any changes to the values of the original image (for 

example, for medical applications: no diagnostic error can be tolerated). The advantage of this type of chain is to 

have a reconstructed and identical image. However, its disadvantage lies in the low compression rate that can be 

achieved. Indeed, this one is limited by the entropy of the source. 

Lossless methods can be used directly in a compression chain. However, some of them are often used after the 

quantization phase of a lossy compression chain, during the transmission or storage of the indexes. We can 

distinguish [4]: 

 Predictive methods: 

These exploit the spatial redundancy that exists between the current value and the previous or next values. 

 Entropic coders 

They try to get as close as possible to the entropy of the sequence of values to be coded, by assigning a number 

of bits as small as possible to the most probable values and vice versa. Huffman coding and arithmetic coding 

are the main entropic coders used in the field of image compression. 

2.2. The compression chain with loss (not-reversible): 

During the quantization phase, changes are made to the values of the image. The advantage of this type of 

approach is that it is possible to achieve significant compression rates, but at the expense of the quality of the 

reconstructed image. However, the majority of consumer applications have turned to this type of compression 

(digital camera, natural images, medical images, transmission of images on different networks, image storage, 

etc.). Fig -1 shows the main steps of a lossy compression chain [4]. 

 

Fig- 1: The three classic steps of image 

Lossy image compression methods constitute the majority of research work, especially during the quantization 

step. We can distinguish: 

 Scalar Quantization (QS) based methods: 

They consist of treating the values (of pixels or coefficients) individually. Different types of Scalar 

Quantification exist, and are still used. 

 My methods based on Vector Quantification (QV) 

At the same time, they treat a group of pixels or coefficients, called vectors. They theoretically allow to be 

always more efficient than methods based on Scalar Quantification. 

2.3. The different stages of compression. 

Current medical image compression methods follow the 3 standard image compression steps. Most of these 

begin with a reorganization of the content of the image, in order to separate the important components of the 

components containing little information by using the K-SVD. This task is fulfilled by a mathematical 

transformation. After this step, it follows quantization which irreversibly degrades the signal, then the coding 

takes the relay by which a bit stream is produced [5] [4]. 
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 Step One: Data Transformation 

The purpose of data transformation in a compression scheme is twofold. Indeed, in addition to reorganizing the 

information, it must represent the important components of a signal with the least possible elements: this is 

called a hollow representation of the signal or compact the energy. 

The purpose of reducing redundancy is to reduce correlations between pixels. It focuses the variations (energies) 

of the image on some samples and distributes almost uniformly the correlated pixels. 

 Second step: Quantification 

In a compression phenomenon, the quantization step is the step that irreversibly degrades the signal. It is, 

however, of utmost importance in reducing the bit rate. By quantization, we mean an operation that transforms a 

continuous signal into a discrete signal using a set called dictionary. This transition from continuous to discrete 

can be done sample by sample. 

Despite the fact that quantization makes it possible to gain significant compression ratio, it is a stage where 

information is lost. Since the quantization operation consists in removing certain information, it is thus a lossy 

operation that will give a loss of precision, which is irreversible. The lower the quantization accuracy, the more 

you gain a compression ratio, but you also lose more information [6]. 

Table-1: Image Quantify at Different Levels 

 

a) Medical image with 

the size of 29.3 KB 

 

b) Image Quantize at 10 Bpp 

making the size of 5.45 Ko 

 

c) Image quantize at 90 bps 

making the size of 31.2 Ko 

 Third step: coding: 

There are two main families of encoders: entropic encoders and range encoders. They are used in a compression 

chain directly on the starting image and they are also used in the last step of the compression chain to exploit the 

redundancies present at the output of the quantization [7]. 

Fig-2 shows the diagram of the functionality of the compression, storage or transmission and decompression of 

an image. 

 

Fig -2: Compression and decompression of an image for storage or transmission. 

Seeing all the compression techniques, the explanation of the K-SVD algorithm follows one another. 

3. K-SVD ALGORITHM 

3.1. Definition 

K-SVD is a useful algorithm for solving the parsimonious dictionary learning problem and consists of an 

alternate optimization [8] [9] [10]. 
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The parsimonious dictionary learning is written by the following formula: 

 (3.01) 

Where   is the norm l0 of the vector xi, that is to say. the number of its non-zero components. 

Iteratively solve a partial problem in X, fixed D. This step is called parsimonious coding step (where "sparse 

coding" on English) in which one seeks to solve: 

 

 

(3.02) 

3.2. Implementation of the K-SVD algorithm 

The problem of equation (3.02) is convex. 

However, the combinatory linked to the use of the ℓ0 standard make the resolution of the image impeccable. 

These methods require approximating the norm ℓ0 to the norm ℓ1. For this modified formulation, the problem of 

optimization, resolutions will be solved. 

It is then proposed to tackle the complex problem presented in equation (3.02) (norm ℓ0) by using an 

approximated algorithm to solve it. The solution will be derived from a method based on Orthogonal Matching 

Pursuit (OMP). The required functions will be provided. 

The second step is to optimize D and fix X of the K-SVD. We therefore seek to solve: 

 

(3.04) 

= =  (3.05) 

Each product  is a matrix of size n × N The term Ek in equation (3.05) is the data reconstruction error made 

from the K-1 elements of the dictionary .  

Since we suppose that these elements are fixed, we try to minimize . It is possible to minimize by least 

squares, but we want to ensure that the updated solution always allows parsimonious decomposition. To ensure 

this property, we will define : 

 (3.06) 

With Wk represents the set of indices (for the examples Y = {yi}) which use the atom dk (that is to say those for 

which  

 Method used for optimization 

To optimize dk, we then use the following method: 

One restricts the matrix Ek, to form   by considering only the columns corresponding to Wk If one notes Ωk my 

matrix of size N × corresponding to copy N times the line vector Wk, we have: 

 (3.07) 

 Solution 
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Thanks to equation (3.07), the following formulation (3.08) becomes easier to handle: 

 
(3.08) 

Both with respect to dk and  , ensuring that the support  (that is, wk, those not null) remains unchanged. To 

determine  , we use a Singular Value Decomposition SVD of  

The solution for dk and   is then the following: 

- dk  is the first column of U  

-  is the first column of V multiplied by Δ (1, 1). 

Here is a figure that gives an overview of the k-SVD algorithm 

 

Fig-3: K-SVD algoritm 

After studying the K-SVD algorithm, we will begin the examination of what is called OCT. 

4. THEORY OF OPTICAL COHERENCE TOMOGRAPHY4 

4.1. General principles of OCT 

OCT measures photon amplitude and flight time using the highly sensitive technique of low coherence 

interferometry or white light interferometry [11]. It is the phenomenon that is at the origin of the beautiful 

iridescent colors that we see on thin layers such as soap bubbles or petrol stains. It was applied for the first time 

in biology in 1988 for measuring the length of the eye. Here is the figure that shows this principle. 

 

Fig-4: Michelson interferometer: principle of interferometry and coherence length 

That system presented in Fig-4 is also called Michelson interferometer. The light from the source is divided in 

amplitude in two arms by a separating surface which is called in this "separator" figure: the object arm 
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comprising the sample, and the reference arm with a known reflecting surface. The flight time of the light 

coming from the object sample, of amplitude E_ob, is measured by recombining it with the reference beam, of 

amplitude E_r, whose flight time (the length of the arm) is known. The field that arrives on the detector is the 

sum of the two fields in amplitude E_r + E_ob. The measured intensity is: 

 

(4.01) 

Where δ is the difference in the interferometer (in μm). That is, the optical path difference between the two arms. 

The resulting intensity is the sum of the intensities reference | E_r | ^ 2and object | E_ob | ^ 2 and a crossword of 

interference n E_r E_ob. 

4.2. Modulation of the interference term 

The term interference is modulated by the coherence: interference is detected with the reference arm only when 

the path is the same to a coherence length close, that is to say 〖δ≤L〗 _c. The temporal coherence length 

〖L〗 _c is a characteristic of the light source; it defines the maximum operating difference on which the 

interference is visible [4]. The interferences are therefore only detected in an area of the object called the 

coherence volume, which is actually a thickness plane L_c / 2n with n the index of the medium. For an ideal 

Gaussian profile spectrum, L_c depends on the spectrum of the source according to the formula [11]. 

 

(4.02) 

The wider the spectrum (large Δλ), the lower the coherence length. Indeed, in a wide spectrum, the interference 

systems due to each wavelength are superimposed and scrambled, because they each have a distinct phase 

difference 2π / λ δ. In terms of order of magnitude, sunlight, as seen by our eye, has a coherence length of 

0.5μm. The light of a sophisticated Ti: Sapphire femtosecond laser (spectrum width 150nm to 200nm centered 

around 800nm) has a coherence length around 2μm. 

However, note that this does not mean, beyond the length of coherence, interference does not cease to exist, they 

are always present but only less contrasting 

4.3. The different configurations of OCT 

There are different configurations of OCT according to the method of acquisition and processing of the 

interferometric signal. They differ according to the techniques used at each OCT [12]. 

 Conventional OCT 

The tomographic image (XZ) is acquired in the temporal space by scanning the reference mirror (Z) and 

transverse scanning the beam (X). The acronym for this OCT is TD-OCT (Time Domain Optical Coherence 

Tomography). [11]. [12]. So it's a temporal optical coherence tomography. This OCT allows the correlation of 

the wave reflected and / or backscattered by the object with a reference wave. The waves coming from the two 

arms of the interferometer, separated and then recombined by the splitter plate, interfere if the difference in 

operation is less than the temporal coherence length of the light source. A detector, usually a photodiode, 

acquires this interferometric signal. To access the structural information of the sample in depth (type A scan), the 

reference mirror is translated during acquisition by the detector shown in Fig-5. 

 

Fig -5: Schematization of the principle of temporal optical coherence tomography. 
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In the following, we will describe the principe of frequency and full field OCT configurations, as well as their 

comparative advantages. 

 Frequency optical coherence tomography 

The tomographic image (XZ) is acquired in the frequency space by scanning the wavelength or acquisition by a 

spectrometer (Z) and transverse scanning of the beam (X). The acronym for this OCT is FD-OCT, which is 

called frequency-domain coherence tomography (or Fourier Domain Optical Coherence Tomography). This 

concept, proposed by Fetcher and Al in 1995, is based on the principle that depth information is also encoded in 

the modulation frequencies of the interference signal spectrum [12] [17]. The axial profile is therefore no longer 

recorded as a function of time but as a function of the frequency or the wavelength and therefore no longer 

requires scanning of the reference mirror, which allows a considerable gain in acquisition time by report to TD-

OCT. 

Two solutions are possible to experimentally record this axial profile as a function of the wavelength.D- OCT in 

the spectral domain and D-OCT spectral scanning. 

4.4. Integration of the image signal processing system into the OCT using the K-SVD algorithm. 

 Introduction 

This section discusses the integration of the D-OCT component technologies described in a complete imaging 

system that will be seen in Fig-6. This includes both hardware considerations such as optimal interferometer 

topologies and scanning synchronization dynamics, as well as software integrations such as acquisition, 

transformation, display, and enhancement of images. using the K-SVD algorithm. A limited discussion on first 

generation slow scanning systems is included when illustration; However, most of the discussion focuses on the 

the-art state of OCT systems that acquire images in near real time. 

 

Fig-6: Block diagram of the D-OCT system components and synchronization requirements. 

In this figure, the thick lines represent the optical signals, the dashed lines represent the electronic signals and the 

thin lines represent the synchronization signals. 

 Determination of the block that integrates the K-SVD algorithm 

In this section, we show the adaptation of the synoptic diagram of the components of the OCT systems with the 

k-SVD algorithm. This algorithm utilizes principal component analysis in the transformation block. This 

transformation is then followed by an adaptive uniform scalar quantization whose pitch varies according to the 

dynamics of the block. The encoding operation converts each coefficient of the quantized transformed matrix 

into a binary word. The reconstruction of the image proceeds in the opposite direction of the compression. 



Vol-5 Issue-2 2019        IJARIIE-ISSN(O)-2395-4396 

 

9538 www.ijariie.com 73 

 

Fig-7: Synoptic diagram of OCT K-SVD. 

5. THE PERFORMANCE CRITERIA OF HIS METHODS. 

The purpose of image compression, whether lossless or lossy, is to obtain the best image quality after 

compression and decompression with a given compression ratio and bits per pixel. 

In order to satisfy the requirements of users as most men only observe the final images, it is also necessary to use 

mathematical methods of image quality measurements before saying whether the technique is the right one or 

not. Subsequently, the evaluation of the quality of an image regardless of its type, tomographic among others, 

will be more realistic. Quantities (mathematical methods) are usually used to appreciate the performance of a 

storage and even compression technique based on the combination of "K-SVD Algorithm with D-OCT". 

The image storage and compression performance parameters described in this article are: compression ratio (Cr), 

compression rate, Peak Signal Noise Ratio (PSNR), and Structural Similarity (SSIM). 

5.1. Compression ratio (Cr) 

The compression ratio (Cr) in English is a measure to determine the performance of a data compression 

technique, whether it is lossless or lossy. It describes the relationship between the size of the original image and 

the size of the compressed image. 

This compression ratio is defined by the following equation [20] [21]: 

 

(5.01) 

Or: 

 T Represents the compression ratio; 

 Din Express the size of the raw data; 

 Dout Express the size of the compressed data. 

To express the compression ratio as a percentage, we apply the inverse operation of equation (5.01) while 

multiplying the result by 100 [21]: 
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(5.02) 

Or: 

T% Represents the compression ratio as a percentage. 

From Equation (5.01), a value of 0.5 means that the size of the data occupies 50% (applying the formula (5.02)) 

of its original size after compression. A value greater than 1 means that the volume of data output is greater than 

the original (a negative compression). 

Another expression of the compression ratio in equation (5.03) is also used to express the percentage of space 

saved after compression. 

 (5.03) 

From this expression (5.03), a value of 50 means that the size of the data compressed at the output occupies 50% 

of the original data size, and the compression has saved 50% of space [22]. 

5.2. Bitrate compression rates per pixel 

Apart from the compression ratio used to evaluate image compression performance, a similar notion to 

compression rates is also used: the bit-by-pixel amount (b / pixel or bpp). 

This is the average number of bits needed, to compress a pixel of the image especially in image. This quantity is 

given by the following formula: 

 

 

(5.04) 

Or: 

 Bimg Represents the bit size of the image 

 Pimg represents the number of pixels of the image which is equal to the width of the image 

  Lim multiplied by the height of the image Himg 

 Its unit of measure is the Bpp or B / pixel 

This BPP amount, after the compression of the image, must be compared with the Bpp of the image before 

compression. 

5.3. Peak Signal Noise Ratio (PSNR) 

PSNR is a quantity to measure the quality of the reconstructed image after decompression. The calculation of the 

PSNR is defined by the following equation: 

 

(5.05) 

With max(Xi) represents the maximum value that each pixel of the image can take. For an 8bit grayscale image 

for example, it has a value of 255. For color images, it is the luminance that is used. 

5.4. The structural similarity index or Structural Similarity (SSIM) 

The SSIM was introduced by Zhou Wang, Alan Conrad Bovid, Hamid Rahim Sheikh, and Eero P. Simoncelli in 

2004 [19]. It is a calculation metric used to measure the similarity between two images. It was developed based 
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on the findings that conventional image quality measurement techniques such as PSNR are unconvincing 

compared to human visual perception. 

The difference, compared to the PSNR measurement techniques, is that the latter estimate the perceived errors of 

each pixel of the image (compared to the original) whereas the SSIM considers the degradation of the image as 

perceived (observable) changes. at the structural information level of the image. 

The usual measurement techniques are based on error sensitivity. These techniques do not consider the structure 

of the image. 

Thus, the researchers brought a new mathematical approach to find a new way to include the image structure 

similarities especially the medical image as the tomographic image to compare the original image and the 

degraded image. 

The SSIM between two images x and y of the same size N × N (or of a window of size N × N) is obtained by the 

following equation 

 

(5.06) 

Or : 

 x, and y are the two windows to compare, 

 μx is the average of x 

 μy is the average of y 

  represents the variance of x, and  that of y 

 σxy represents the covariance of x and y 

 ,  represent two variables to stabilize the division by a low denominator, 

 1, (BPP bit-by-pixel sampling) 

 and k1 = 0.01, k2 = 0.03 by default. 

6. APPLICATION OF THIS TECHNIQUE IN A TOMOGRAPHIC IMAGE EXAMPLE 

This technique finds its application especially in the medical field. For these reasons, it will be more interesting 

to carry out examples, which, like frequent cases, use the OCT. 

6.1. Optical coherence tomography in ophthalmology 

Ophthalmology remains the preferred field of application for optical coherence tomography. The main reasons 

for this craze are: 

 The high transmission of the ocular medium which allows to reach depths of penetration of the order of 

millimeters, 

 The interferometric sensitivity and micrometric spatial resolution of the OCT technique, which resolve 

most of the structures of interest of the eye, 

 The independence of the axial resolution with the numerical aperture of the probe beam, which makes it 

possible to image the structures of the eye, in particular the retina, with a high axial resolution although 

the numerical aperture is very limited by the size from the pupil of the eye. 

For these reasons, the use of the K-SVD algorithm is very important. OCT's commercial instruments have 

become commonplace, as are traditional techniques in an ophthalmic examination (including Cirrus OCT 

devices such as Zeiss Stratus OCT and Thorlabs SS-OCT). The instrument marketed by Carl Zeiss Meditec, the 

Cirrus HD-OCT (FD-OCT device), makes it possible to perform in vivo tomographic slices with a resolution of 

approximately 5 μm (Fig -8) and an acquisition speed of 25,000. One-scan per second. This very high 

acquisition rate makes it easy to perform in vivo clinical examinations. However, the resolution must be 

substantially improved in order to detect certain pathological diseases affecting the intrathecal structures, 

unsolved with 5 µm. 
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Fig-8: Cirrus HD-OCT Commercial Instrument by Carl Zeiss Meditec. 

 

In the laboratory, a number of applications have been made in the field of ophthalmology, in particular for the 

diagnosis of pathologies. Fig -9 and table -2 respectively show high-resolution OCT tomographic slices of an ex 

vivo rat cornea in axial and transverse reconstruction. 

 

Fig-9: Tomographic images obtained by OCT in axial reconstruction of an ex vivo rat cornea 

Table -2: Tomographic images obtained by OCT in transverse reconstruction of an ex vivo rat cornea 

 

Layer 1: The layer that 

is at the top 

 

Layer 2: The layer at the 

bottom 

6.2. Application of the k-SVD algorithm in the tomographic image 

 Vector approach  

Vector approach that is to say the transformation is applied to a matrix using the K-SVD algorithm. The 

projection on the factorial axes with the percentages of inertia for each principal axis is given by the following 

table. 
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Table -3: The three main components of the OCT image of an ex vivo rat cornea. 

Principle component 1 Principle component 2 Principle component 3 

 

 

 

 

 

 

 

 

Inertie = 90,2% Inertie = 8,9% Inertie = 0,9% 

The totality of the image energy is divided into three main components, the first of which contains most of it. 

This distribution depends on the size of the bulk partitioning performed on the image. 

So a good choice of the number of main components and the block size is a decisive parameter in the 

compression. It must be done judiciously taking into account the law of distribution of the energy in the image 

and its contents even if experimental values between 80% and 90% can be practically chosen. 

 Marginal approach 

The efficiency of a transformation can also be judged by its power of reconstruction, that is to say its capacity 

more or less great to reconstruct the original image according to the energy distribution. One way to measure this 

capability is to use metrics such as compression ratio, P.S.N.R and S.S.I.M which are objective indicators of 

degradation of the reconstructed image. In practice, threshold values are chosen for the two quantities, from 

which the acceptable degradation is considered. Frequently used ranges are 30 dB to 40 dB for P.S.N.R and 0.8 

to 0.9 for S.S.I.M. 

- Simulation at compression ratio levels 

For this assessment, after setting the quantization levels. We obtain the following figure: 

 

Fig 10: Compression rate as a function of the number of eigenvalues for fixed h. 

It can be said that the compression ratio is a measure of the performance of a data compression technique such as 

the tomographic image. It describes the relationship between the size of the original image and the size of the 

compressed image. 

- Simulation at PSNR level 
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The variations of P.S.N.R as a function of block size and as a function of eigenvalue for fixed h are illustrated by 

the following figures in the case of the tomographic image of a cornea of a rat. 

 

Fig -11: PSNR according to the number of proper value. for fixed h. 

 

Fig -12: Variation of PSNR according to the number of proper value. 

The figure shows that P.S.N.R varies much more rapidly when the size of the block decreases and this rapid 

variation is observed in the vicinity of the extremal values that can be taken as number of eigenvalues. Among 

other things, for a 8x8 block image, the total number of eigenvalues is 8. The value of the PSNR is already in the 

range [30 40] dB when less than 50% of the eigenvalues are taken.  

- Simulation at the level of the SSIM 

For this mathematical method, we will also see the variations according to the block size and as a function of 

eigenvalue for fixed h. The following figures show the results. 
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Fig -13: SSIM as a function of the number of proper value for h fixed. 

 

Fig-14: Variation of the SSIM according to the number of proper value 

Contrary to what had happened for the RN, the SSIM tends to flatten when the number of eigenvalues to keep 

approaches the maximum values. This phenomenon comes from the fact that the eigenvalues are ordered in the 

decreasing direction and that the cumulative inertia percentages are almost constant in the vicinity of the 

maximum values 

7. CONCLUSIONS 

The study in this paper examines the performance of the K-SVD algorithm in the OCT technique. On different 

images of tomographic acquisition, the criterion of comparison is of course the quality of the image at the 

reconstruction for the different values of the number of projections. By relying on the PSNR values obtained and 

the visual results, the K-SVD algorithm gives a better performance for a large number of projections or displays. 

Can we do the same project for other non-medical images? 
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