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ABSTRACT 
Using eigenvalue analysis, this study examines cyclogenesis in the cyclone-prone Mozambique Channel. When it 

comes to meteorological variables like humidity, vorticity, and mean sea level pressure (MSLP), this technique aids 

in identifying the prominent fluctuation modes. Eigenvalues facilitate the understanding of pre-cyclonic dynamics by 

indicating the proportion of variance explained by each mode. According to the analysis, there is a dominant 

tendency in the variability, with the first eigenvalue explaining most of the variance and consistently being bigger 

than 1. But the second eigenvalue, which can occasionally be greater than 1, emphasizes the significance of a 

bidimensional component in particular circumstances. This implies that cyclone formation may be influenced by an 

additional major component in addition to the basic structure. As a result, the study highlights how crucial it is to 

take into account the second eigenvalue in addition to the first in order to fully comprehend the intricate 

interactions that lead to cyclogenesis. 
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1. INTRODUCTION 

The Mozambique Channel, located between Madagascar and the south-east coast of Africa, is a region prone to the 

formation of tropical cyclones, particularly during the rainy season, generally from November to April. Forecasting 

cyclogenesis in regions such as the Mozambique Channel is a major challenge for the safety of populations and 

economic activities. Tropical cyclones can cause considerable damage, including flooding, strong winds and 

landslides. To improve the accuracy of forecasts, researchers are taking a close look at the physical mechanisms that 

govern the formation and evolution of these systems. One approach to improving predictability is to analyse key 

meteorological variables, using advanced techniques such as eigenvalue analysis (or principal component analysis, 

PCA). PCA reduces the dimensionality of the data by identifying the main modes of variability, making it easier to 

understand the physical processes underlying cyclone formation. These eigenvalues are essential for capturing the 

dominant structures in meteorological fields and can be used as precursors or indicators of cyclogenesis. 

 

2. MATERIELS ET METHODOLOGIES 

2.1 DATABASE 
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➢ The meteorological data used in this work are daily data from 01 January 1979 to 31 December 2018. The 

variables Mean Sea Level Pressure (MSLP), Sea Surface Temperature (SST), wind components (u and v) at 

different altitudes, vorticity, specific humidity, divergence are taken from ERA5 (European Centre for 

Medium-Range Weather Forecasts - ECMWF Reanalysis 5) with a spatial resolution of 0,5 0,5   [1]. 

On the other hand, the NOAA (National Oceanic and Atmospheric Administration) provides OLR 

(Outgoing Longwave Radiation) measurements from satellites with a spatial resolution of 2,5 2,5   [2].  

➢ Cyclone data are obtained from IBTrACS (International Best Track Archive for Climate Stewardship) [3] 

and Centre Météorologique Régional de La Réunion (CMR La Réunion) [4].  

 

2.2 STUDY AREA 

We will focus our study on the area framed in blue in Figure 1, delimited by longitudes between 35°E and 45°E, and 

latitudes between 12°S and 24°S. 
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Fig- 1 : Representation of the study area 

2.3 METHODOLOGY 

2.3.1 Eigenvalue method  

The eigenvalue method is a powerful tool for analysing meteorological phenomena such as cyclogenesis, in 

particular for identifying the dominant modes of variability in atmospheric data. Applied to the study of 

cyclogenesis, this method can be used to analyse the dynamics of fields of pressure, temperature, wind and other 

meteorological variables, in order to extract the most significant spatial and temporal structures associated with 

cyclone formation. 

2.3.1.1 Eigenvalue method for cyclogenesis analysis  

In the analysis of cyclogenesis, eigenvalues are often used as part of the analysis of orthogonal empirical modes (or 

Principal Component Analysis, PCA). This makes it possible to identify the main spatial structures of variability and 

the temporal modes associated with phenomena such as cyclone formation [5].  

If X is a matrix of meteorological data, of dimension n p  , where n  represents the number of observations (for 

example, the number of days) and p  the number of spatial points, the PCA is based on the following 

decomposition:  

TX U V=    (1) 
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where:  

- U  is a matrix n n  whose columns are the eigenvectors of the matrix 
TXX , 

-    is a diagonal matrix containing the eigenvalues, 

- V  is a matrix p p  containing the eigenvectors of the matrix 
TX X . 

This breakdown makes it possible to identify the dominant modes of variability. The first largest eigenvalues 

correspond to the spatial structures that explain most of the variability in the phenomenon studied (in this case, 

cyclogenesis). 

2.3.1.2 Specific application to cyclogenesis 

As part of the study of cyclogenesis, the eigenvalue method can be applied to extract the dominant modes associated 

with cyclone formation in a given region, such as the Mozambique Channel. For example, meteorological variables 

such as atmospheric pressure at sea level (MSLP), specific humidity or vorticity can be decomposed to identify the 

spatial structures that contribute to cyclogenesis [6].  

2.3.1.3 Key formulas  

The covariance matrices are decomposed into eigenvalues and eigenvectors, where the eigenvectors represent the 

main directions of variability, and the eigenvalues represent the contribution of each component to the total 

variability.  

The eigenvalues and eigenvectors are obtained by solving the following equation for the covariance matrix C:  

i i iCv v=   (2) 

The highest eigenvalues correspond to the spatial structures that explain most of the variability in meteorological 

data [7].  

2.3.2 Fuzzy logic 

Fuzzy logic is an extension of classical logic proposed by Lotfi A. Zadeh in 1965. Unlike classical logic, which is 

based on binary values (0 or 1, true or false), fuzzy logic allows degrees of membership between 0 and 1 to be 

represented and manipulated, providing a framework for modelling uncertainty and imprecision in complex systems. 

It is particularly useful in areas where human decisions are often based on approximate judgements rather than 

precise values [8]. 

2.3.2.1 Fundamental Concepts of Fuzzy Logic  

❖ Fuzzy Set [9] 

A fuzzy set is a generalisation of classical sets. In a fuzzy set, an element can have a membership degree between 0 

and 1. If we consider a fuzzy set A in a universe U, then the membership function A  is defined by : 

 ( ) : 0,1A x U →    (3)  

Here, ( )A x  represents the degree to which element x belongs to set A.  

❖ Operations on Fuzzy Sets [10] 

The classical operations of set theory can be generalised to fuzzy sets. For two fuzzy sets A and B, the main 

operations are: 
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• Union : ( )( ) max ( ), ( )A B A Bx x x   =    (4) 

• Intersection : ( )( ) min ( ), ( )A B A Bx x x   =  (5) 

• Complement : ( ) 1 ( )AA
x x = −   (6)  

These operations enable fuzzy sets to be combined flexibly to represent complex situations. 

2.3.2.2 Fuzzification and Defuzzification 

❖ Fuzzification [11] 

Fuzzification is the process of transforming a net value into a fuzzy value. For example, the temperature of a room 

measured at 22°C could be transformed into fuzzy values such as "moderate temperature" or "high temperature", 

with corresponding degrees of membership. Fuzzification is achieved using membership functions such as 

triangular, trapezoidal or Gaussian functions (Fig. 2). 

 

Fig. 1 : Examples of membership functions [12] 

❖ Defuzzification [13] 

Once the fuzzy rules have been applied, it is necessary to convert the fuzzy results into a crisp value. This process is 

called defuzzification. The most common methods of defuzzification include : 

• Centre of Gravity (COG): This is the most commonly used method and calculates the weighted average 

of the blurred values: 

. ( )

( )

A

A

z z dz
z

z dz




=



 (7) 

• Average of Maxima (MoM): This method takes the average of the maximum values in the fuzzy domain. 

2.3.2.3 Fuzzy Rules System [14] 

Fuzzy rule systems are based on conditional rules of the form: if 1x  is A  and 2x  is B ; then y  is C . 
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 The inputs 1x , 2x , etc., are associated with fuzzy sets (A, B, ...) and the output y  is also fuzzy. Each rule 

is a linguistic interpretation based on human observations. For example, a rule in a temperature control system might 

be: if the temperature is "high" and the humidity is "low", then reduce the air temperature. 

These systems make it possible to create very flexible and robust models, capable of handling complex situations 

with many input variables. 

3. RESULTS AND INTERPRETATIONS 

3.1 Study of eigenvalue spectra of raw data matrices 

To study the preconditions for cyclone formation, we have tracked the evolution of key meteorological variables in 

regions, focusing on the points where these variables reach their extreme values. These areas are square and have a 

side length of 226 km ( 2 2  ), chosen to surround the cyclone's initial development zone. For each day preceding 

the formation of a cyclone, we extracted a 3 3  data matrix corresponding to the values of the variables in this zone. 

Analysis of the eigenvalues of these matrices enables us to identify the dominant modes of variability and to explore 

the relationships between different meteorological variables during the pre-cycle period. 

3.1.1 Behaviour of the eigenvalue spectrum before cyclogenesis  

Consider tropical cyclone FUNSO, which officially began its cyclogenesis on 18 January 2012 in the 

Mozambique Channel at around 15°S latitude and 40°E longitude. We located a zone centred around the MSLP 

minimum point on a daily basis over a period of 15 days prior to the day of the cyclone's christening. It is important 

to note that the MSLP minimum zone can change from one day to the next, which implies that cyclone FUNSO 

could be the result of a disturbance distinct from the one observed 15 days before. 

We extracted the data matrices corresponding to these minimum MSLP zones for each day and calculated their 

eigenvalues. The eigenvalues obtained for each day are shown in Table I. 

 

Table I: MSLP eigenvalue matrix before the formation of cyclone FUNSO 

For day -15 : 

     3.0191        0         0 

         0    0.7273         0 

         0         0    0.2536 

 

For day -14 : 

    3.2329         0         0 

         0    0.7646         0 

         0         0    0.0024 

 

For day -13 : 

   3.2232          0         0 

         0    0.7621         0 

         0         0    0.0148 

 

For day -12 : 

    3.5869         0         0 

         0    0.4054         0 

         0         0    0.0077 

 

For day -11 : 

   3.1160          0         0 

         0    0.8436         0 

         0         0    0.0404 

 

For day -10 : 

   2.9023          0         0 

         0    1.0605         0 

         0         0    0.0372 

 

For day -9 : 

    2.8088         0         0 

         0    1.1897         0 

         0         0    0.0015 

 

For day -8 : 

    2.7206         0         0 

         0    1.2778         0 

         0         0    0.0016 

 

For day -7 : 

     2.5712        0         0 

         0    1.1965         0 

         0         0    0.2324 

 

For day -6 : 

    2.4699       0           0 

         0    1.4667         0 

         0         0    0.0634 

 

For day -5 : 

    2.8808         0         0 

         0    0.7762         0 

         0         0    0.3431 

 

For day -4 : 

    2.3276         0         0 

         0    1.3879         0 

         0         0    0.2844 

 

For day -3 : 

     3.5146        0         0 

         0    0.3120         0 

         0         0    0.1734 

 

For day -2 : 

     3.0322        0         0 

         0    0.8186         0 

         0         0    0.1492 

 

For day -1 : 

    3.1801         0         0 

         0    0.8054         0 

         0         0    0.0145 

 

For day 0 : 

     3.0802        0         0 

         0    0.8324         0 

         0         0    0.0873 

 

 

Interpretation of the eigenvalue matrices from the MSLP data (Table I) provides a better understanding of the 
dominant structures in the precyclogenesis phase, by analysing the distribution of variance associated with each 
component.  

The eigenvalue matrices have three values, corresponding to the main directions of variability of the data in the 
2° x 2° zone. Each eigenvalue indicates the amount of variance explained by the corresponding component (also 
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known as the principal axis or mode). In general, a large eigenvalue indicates a direction of high data variability, 
which means that this component is significant in describing the structure of cyclogenesis, and a small eigenvalue 
(close to 0) indicates a direction of low variability, which means that this component contributes little to the 
variability of the system. 

The three eigenvalues can be used to assess whether the dynamics of precyclogenesis are dominated by one or 
more dimensions. The sum of the eigenvalues is constant (around 4) for each day, which is normal as it represents 
the total variance of the data.  

The third eigenvalue is always practically zero.  

The first eigenvalue is dominant because its value is always greater than 1 and it is the largest eigenvalue. This 
shows that a major component explains most of the variance and suggests that a main mode of variability dominates 
the area analysed. When the difference between the first and third eigenvalues is large, the dynamics of the system is 
predominantly one-dimensional (concentrating on a single dominant direction). 

We also note that the second eigenvalue is sometimes greater than 1. If the second eigenvalue is significant, 
there may be a significant two-dimensional component. The fact that the first eigenvalue always remains dominant 
throughout the days shows the importance of a main direction in the evolution of precyclogenesis, but the 
emergence of the second eigenvalue (e.g. 1.2778 for day -8) shows that a secondary component is becoming 
increasingly significant. The changes in the eigenvalues, especially the increase in the second eigenvalue, could 
indicate a reorganisation of the pressure field in the days preceding cyclogenesis. 

3.1.2 Variation of the second eigenvalue 

Chart 1 shows the variation in the second eigenvalue for different meteorological variables over a period of 15 
days preceding the FUNSO cyclogenesis. High variability is observed for all the variables, indicating dynamic 
changes in the atmospheric structure.  

Variations in the second eigenvalue indicate changes in the secondary structure of the meteorological fields. 
Differences in behaviour between levels (e.g. SHUM 200 vs SHUM 700) suggest distinct processes at different 
altitudes. We observe that 8 days before cyclogenesis, four variables (OLR, SHUM 700, MSLP and VENT 850) 
have eigenvalues greater than 1. 

 

Chart -1 : Variation de la deuxième valeur propre 

 
Table II: Dates of appearance of combination of eigenvalues simultaneously ≥1 

CYCLONE MSLP OLR VORT 

700 

VORT 

850 

DIV 

200 

SHUM 

200 

SHUM 

700 

VENT 

850 

Day before 

cyclogenesis 

EDWIG 0,9439 1,5913 0,4121 0,5344 1,3615 0,6293 1,1431 1,6205 02  

20S_1982 1,1052 1,8615 0,7851 1,4391 0,8687 0,4209 0,5841 1,2971 02 

CABOTO 1,1435 0,1934 1,5037 0,291 1,2782 0,503 1,6216 0,9395 12  

IMBOA 1,3405 0,9103 1,413 0,4968 0,6324 1,5996 0,4076 1,4563 11 

FELIKSA 1,2564 1,4361 1,2835 1,1247 0,4635 0,222 1,5289 1,7308 10 

ALIFREDY 1,4197 1,6039 0,4104 0,1506 0,7047 1,0475 0,1442 1,5033 13  
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BEROBIA 1,0642 0,6661 0,9141 0,191 1,2666 0,8495 1,0431 1,7129 12  

GISTA 0,615 1,3036 1,283 0,139 1,3213 1,1315 1,0489 1,142 05 

CALASANJY 0,8939 1,7541 0,615 1,1804 1,1856 1,1901 0,3411 1,5274 11  

IANA 1,1543 1,564 0,9333 0,239 0,4975 0,7562 1,4456 1,0442 08 

HANTA 1,5886 0,1338 0,5386 0,759 0,6815 1,2798 1,325 1,521 12  

CYNTHIA 1,1075 0,7954 1,2366 1,3701 0,1309 0,9888 0,3595 1,3753 09 

DEBRA 0,533 1,3889 0,5941 0,6898 1,4624 0,8259 1,5393 1,147 09  

ELIZABETHA 1,2847 1,3512 1,6907 0,971 0,4333 0,5949 1,1998 1,0785 11 

C3_1992 1,5055 1,0399 0,5659 0,872 0,9705 0,5338 1,4901 1,1379 07 

DESSILIA 1,2564 1,6474 1,3795 1,48 0,234 1,367 0,3731 0,3102 11  

GRACIA 0,5027 1,4851 0,6617 0,4745 1,0479 1,3738 0,7186 1,082 11  

IONIA 1,3311 0,1728 1,2593 0,6579 1,0915 0,3787 1,2359 0,8891 12 

FODAH 1,0889 0,8727 0,3411 1,26 0,3001 1,4008 0,28 1,2298 13  

JOSTA 1,2716 1,3269 0,8921 1,4505 0,7346 0,4364 1,1532 1,3358 11 

LISETTE 1,2329 0,8799 0,2029 1,2997 1,6073 0,3326 0,2388 1,1084 11 

13S_1998 0,2693 1,3023 0,608 0,0471 1,2172 0,4482 1,5087 1,2649 01 

BELTANE 1,1544 1,6582 0,8619 0,8267 0,8223 1,8575 0,8285 1,3624 14 

ALDA 1,1919 1,3617 1,2496 0,5008 0,5538 0,4504 0,4776 1,0256 04 

21S_1999 1,6681 1,3503 0,8842 0,6635 1,0101 1,2784 1,3194 1,0678 15 

CYPRIEN 1,0171 1,7333 1,5947 1,89 1,7382 0,4076 0,6786 0,8749 14 

DELFINA 1,2147 1,3572 1,0519 0,068 0,3146 0,2947 1,1169 0,5512 10  

JAPHET 0,575 0,7994 0,7562 1,6023 0,3402 1,5068 1,78 1,3203 14 

ELITA 1,6934 1,2503 1,4495 0,5309 1,3446 0,5398 0,9971 0,6608 06 

FELAPI 0,1519 0,238 0,9271 1,2006 1,1284 1,082 0,7051 1,5213 11  

ANITA 0,8753 0,8066 1,4198 0,2727 0,55 1,4075 1,3496 1,4637 11 

15_2007 0,2989 1,713 0,1975 1,1667 1,2869 0,2821 1,4859 0,9073 13  

ELNUS 1,0541 1,1298 1,0792 0,828 1,1045 1,2702 0,9636 1,3182 14  

FANELE 1,1101 0,8024 0,7418 1,2259 1,0635 1,3009 0,9613 0,2227 15 

IZILDA 0,0644 1,0787 1,3767 1,2373 1,126 1,2069 0,5796 1,4748 14  

FAMI 1,0512 0,3234 1,0496 0,2685 1,1667 0,7843 0,4378 1,1123 13 

CHANDA 1,3302 0,8525 1,0824 0,066 0,3804 1,5585 1,1476 0,9602 05  

FUNSO 1,2778 0,1614 0,7282 0,4391 0,348 1,0192 1,3055 1,0058 08  

HARUNA 0,4111 1,4311 0,1969 0,5117 0,6112 1,2599 1,2004 1,4188 13 

DELIWE 1,6169 0,2869 1,2407 0,5522 0,5935 1,5557 1,5734 0,6035 14 

GUITO 0,6304 0,0704 1,478 1,5705 1,5146 0,6143 1,2082 1,483 10  

HELLEN 0,2444 1,1363 0,7912 1,0235 1,3624 1,2847 0,6065 0,6136 13  

CHEDZA 0,9734 1,2668 1,457 0,6576 1,5557 0,641 1,9587 1,6821 09 

FUNDI 1,3727 1,2007 0,7735 0,6197 1,2637 0,1459 1,6317 1,1959 13  

15S_2015 1,3826 1,5542 1,1617 1,0265 1,0921 0,356 0,6935 1,1494 12  

DINEO 1,3507 1,4345 0,7666 0,2631 1,0579 0,8043 0,4479 1,3358 09 

04_2018 1,2229 1,0341 0,5066 1,2001 1,005 0,7069 0,8284 1,5469 08  
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Table II shows that the most frequently significant variables (eigenvalue > 1) are the wind at 850 hPa (74.5%), 
the RLO (61.7%), the MSLP (59.6%) and the specific humidity at 700 hPa (53.2%), suggesting their importance in 
cyclone formation. The majority of observations (59.6%) were made 11 to 15 days before the cyclone formed, 
suggesting that the favourable conditions were put in place well in advance. Low-level variables (850 hPa) appear to 
be more significant than high-level variables (200 hPa), with the exception of RLO, which is an integrated 
measurement over the entire atmospheric column. The specific humidity at 700 hPa appears to be greater than that at 
200 hPa, underlining the role of humidity in the middle layers of the atmosphere. The divergence at 200 hPa is less 
frequently significant, but could play an important role in certain cases. 

3.2 Modelling with fuzzy logic 

Modelling meteorological events such as cyclogenesis is essential for understanding and predicting the atmospheric 
dynamics that lead to the formation of cyclones. However, the complex and uncertain nature of these processes 
makes it difficult to use strictly deterministic models. To overcome this difficulty, fuzzy logic offers a flexible 
approach that makes it possible to model dynamic systems with inherent imprecision, based on simple rules and 
fuzzy concepts. The Mamdani-type fuzzy inference system (FIS), commonly used in meteorology, is particularly 
well suited to capturing these uncertainties and providing reliable approximations. The aim of this study is to apply 
fuzzy logic to model and predict the days before cyclogenesis, based on events observed between 1979 and 2018. A 
Mamdani-type model with 15 rules will be used, and the performance of the model will be compared with real data 
via an analysis of the deviations and the quality of the approximation. 

3.2.1 Data representation 

Chart 2 represents the evolution of days before cyclogenesis where the eigenvalues are simultaneously ≥1 as a 
function of the rank of cyclogeneses observed between 1979 and 2018. Two curves are plotted namely the actual 
data (in blue) and the linear trend (in red).  

The trend equation indicates that the number of days before cyclogenesis increases slightly over time. In fact, the 
coefficient 0.067 ahead shows a gradual increase in this delay. Although this increase is small, it may indicate a 
slight trend towards longer delays before the onset of cyclogenesis as the events progress in the historical series. 

The actual data (blue curve) show considerable variability, with values fluctuating irregularly around the trend. 
There are periods when the time to cyclogenesis is very short (sometimes close to 0), and others when it is longer 
(up to around 15 days). This fluctuation shows the unpredictable nature of the meteorological conditions that lead to 
cyclogenesis. 

 

Chart -2 : Dates of appearance of combinations of at least four eigenvalues simultaneously  

 

3.2.2 Fuzzy Inference System (FIS) 

Chart 3 shows a Mamdani-type fuzzy logic model, which is a system with one input and one output, with 15 rules 

for establishing the correspondence between input and output. 
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The model uses a Mamdani approach, which is one of the most common types of fuzzy logic system. It is well 
suited to modelling complex systems where uncertainty and imprecision are present, as is often the case in 
meteorology or in dynamic systems such as cyclones. The rules of the model are based on fuzzy logic, where inputs 
are transformed into outputs through a set of conditional rules of the type "IF input is MFx THEN output is MFy". 
The Mamdani system will fuzzify the input, apply the rules, aggregate the results, then defuzzify to produce a 
precise output. 

 

Chart -3: Fuzzy inference system  

3.2.3 Model representation 
Chart 4 shows the evolution of the number of days before cyclogenesis as a function of cyclogenesis rank 

between 1979 and 2018. The x-axis represents the "Rank of cyclogenesis from 1979 to 2018". Each point on this 
axis corresponds to a specific cyclogenesis event during this period. There are approximately 48 cyclogenesis events 
listed. The y-axis shows the number of "Days to cyclogenesis", i.e. how many days before cyclone formation the 
data is taken or modelled. The red curve represents the actual observed data for the days preceding each 
cyclogenesis, while the blue curve represents a fuzzy model used to predict the number of days before each 
cyclogenesis. 

The majority of points indicate that the days before cyclogenesis vary between around 5 and 15 days. There are a 
few peaks where the number of days before cyclogenesis increases significantly, but there are also some abrupt 
drops. The actual data and the fuzzy model appear to be very similar, although there are times when the red curve 
breaks away slightly from the blue model (for example, around the 25th and 34th ranks), where there is a small 
mismatch between the actual values and the fuzzy model. 

The fuzzy model used here seems to provide a good approximation of the days before cyclogenesis for the 
majority of events. However, some small differences appear in the moments when conditions can deviate more 
strongly from the model, suggesting the possibility of improvements or limitations in the modelling of extreme 
events. 
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Chart -4: Fuzzy logic modelling 

3.2.4 Comparison between the fuzzy model and its approximation  

Chart 5 shows a comparison between a fuzzy model (in blue) and its approximation (in dotted red). The model 

appears to fit the data well, with only minor deviations, particularly in the lower range of input values (around 0 to 

5). 
The MSE (mean square error) is 0.0204, which indicates that the fuzzy model approximation is very accurate. A 

smaller MSE suggests that the values predicted by the model are close to the actual output values. In this case, an 
MSE of 0.0204 means that the approximation error is very small, confirming that the model is very effective in 
approximating the underlying data. 

 

Chart -5: Comparison between the fuzzy model and its approximation 
3.2.5 Fuzzy model equation  

The given equation represents the fuzzy model using Gaussian membership functions. It can be interpreted as a 

weighted sum of the output centres iy , where the weights are determined by Gaussian functions applied to the 

difference between the input x  and entry centres ix . 
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  (8) 

0,4667 = : This represents the standard deviation of the Gaussian functions used in the fuzzy model. It 

controls the width of the Gaussian curve. A smaller value of   indicates sharper peaks, while a larger value 

indicates wider peaks.  

4. CONCLUSION 

The use of fuzzy logic in modelling the days before cyclogenesis proved to be an effective method, particularly for 

capturing uncertainties and fluctuations in the real data. The fuzzy model proposed in this study showed robust 

approximation capability, as evidenced by the low mean square error (MSE). However, although the fuzzy model 

closely follows observed trends, some deviations exist, particularly during certain extreme events where conditions 

may deviate from predictions. This suggests that there is room for improvement, in particular by refining the fuzzy 

rules or introducing additional factors to model exceptional cases. Despite this, the model remains a valuable tool for 

forecasting cyclogenesis, offering a complementary perspective to deterministic approaches. 
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