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ABSTRACT 
This research work consists in studying a phase in advance, allowing effective assistance to all those who have to 

make decisions regarding the planning and implementation of projects based on the wind in the Northern part of 

Madagascar. This part of the island is swept by a south-eastern Alizé wind regime known as “Varatraza”. This wind 

blows violently and continues. With this in mind, we made a forecast of average monthly wind speeds based on daily 

low-level wind data from 1979 to 2017. Northern Madagascar is a high wind potential area with an average wind 

speed close to 9 m/s. 
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1. INTRODUCTION 

Time series forecasting has been a long-standing issue. There are applications in many areas, such as economics, 

meteorology, energy, medicine, etc… 

As an essential meteorological and climatological variable, wind is a source of energy called "renewable" but also of 

damage and it intervenes in countless physical phenomena or human activities [1]. 

Theoretically, time series prediction requires modelling the system that generated the series data. By having a 

system of mathematical and deterministic equations and knowing the initial conditions, it would be possible to 

predict the evolution of the system [2]. The general objective of this article, carried out on the northern part of 

Madagascar, is to predict the monthly changes in average wind speeds. 

2. METHODOLOGIES  

2.1. Databases 

We used wind data at 950 hPa from the European Center ECMWF [3]. These data have a spatial discretization of 

0.5°x0.5° in latitude and longitude and a temporal depth covering the period 1979-2017. Once these parameters have 

been extracted, the database used consists of 14245 daily wind states. The data are in the form of a table with n rows 

and p columns, which is stored as an X matrix of n p size. 
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2.2. Study area 

The study area is the extreme north of Madagascar which is between (Fig-1): 

• 12° South and 13.5° South latitude 

• 48.5° East and 50° East longitude 

 

Fig-1: Representation of study area 

2.3. Time series modelling [4] 

Objective: To model and predict the future evolution of the time series from those observed. 

2.3.1. ARIMA model 

The class of ARIMA models [Box and Jenkins, 1976] was introduced to reconstruct the behaviour of processes 

subjected to disturbances over time and thus modify the values of the time series of observations. ARIMA models 

combine three types of time processes: Autoregressive Processes (AR-Autoregressive), Integrated Processes (I-

Integrated), and Moving Average (MA-Moving Average). 

The contribution of each of them is specified by the ARIMA rating (p, d, q), where p is the order of the AR (p) 

autoregressive process, d is the degree of integration of a I(d) process, and q is the order of the moving average 

MA(q). 

2.3.2. ARIMA processes (p, d, q) 

Let Xt be a series that is not stationary and has no seasonality. An ARIMA process (p, d, q) of the X t series is a 

process of the following form: 

φ(L)(1 − L)dXt = θ(L)εt 

With                                       φ(L) = 1 − φ1L − φ2L2 − ⋯ … … … φpLP 

θ(L) = 1 − θ1L − θ2L2 − ⋯ … … … θqLq 
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And        εt ∽ BB(0, σε
2), L is the delay operator, “d” is the degree of integration for the Xt series to become 

stationary (d ≥ 0)and (φ1, φ2 … … φp)and (θ1, θ2 … … θq)are the coefficients to be estimated. 

2.3.3. SARIMA processes (p, d, q) (P, D, Q). 

These processes are a generalization of the ARIMA models (p, d, q), containing a seasonal part. 

(1 − Ls)φ(L)ϕ(Ls)(1 − L)dXt = θ(L)ϑ(Ls)εt + φ0 

with 

φ(L) = 1 − φ1L − φ2L2 − ⋯ … … … φpLP 

θ(L) = 1 − θ1L − θ2L2 − ⋯ … … … θqLq 

ϕ(Ls) = 1 − ϕ1Ls − ϕ2L2s … … 

ϑ(Ls) = 1 − ϑ1Ls − ϑ2L2s … … 

2.3.4. Box and Jenkins methodology 

Three steps are necessary for the construction of the models: an identification phase, an estimation phase, a 

validation phase [5]. The Box-Jenkins method allows us to determine the order (p, d, q) of an ARIMA process. To 

determine "p" and "q" it is necessary to trace the PACF (partial correlogram) and the ACF (correlogram) of the 

stationary ARMA process obtained after differentiations if necessary. These two graphs give us respectively the 

maximum value of p and q noted: pmaxand qmax [6]. At the end of these three phases, once the best ARMA model, 

that is to say the one with the lowest BIC (Baisian information critérion) is determined (Schwarz, 1978), this model 

is used for forecasting purposes in the «h» horizon. 

3. RESULTS 
3.1. Monthly wind speeds 

For the 39 years of study, the evolution of the monthly average speeds is represented by the figure 2. For modelling, 

we took the 82%, or 384 months from 1979 to 2010 (In blue). The remaining 84 months from 2011 to 2017 will be 

used for model validation (In green). 

 

Fig-2: Evolution of monthly wind speeds in Northern Madagascar from 1979 to 2017(m/s) 
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Before starting the modelling, we have to check our series if it satisfies both stationary and non-seasonal conditions. 

3.2. Statistical tests 

Based on the various stationary and trend tests, we can conclude that our monthly wind time series in Northern 

Madagascar is stationary and does not show a significant trend therefore there is no differentiation to run (Tab-1). 

Thus in our SARIMA model, the parameter d=0. 

Tab-1: Summary of Statistical Tests 

Test KPSS Dickey-Fuller Mann-Kendall 

Hypothesis H=0 H=1 H=0 

p_value 0.1 0.04 0.6 

alpha 0.05 0.05 0.05 

Results Stationary Stationary No tendency 

 

3.3. Estimation of seasonality 

The correlation shows the existence of a cyclic element with in the series (Fig-3). We have noticed significant peaks 

at the few offsets (as at shift k = 12 months, k = 24 months, k = 36 months, etc.) that signal us despite our series 

being stationary, it also has a seasonality (12 months) that we must remove before modelling the series.  

 

Fig-3: Initial series autocorrelogram 
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3.4. Seasonal adjustment of series by first seasonal differentiation 

Since we have to work on a stationary and also non-seasonal series, we made a first seasonal difference (D = 1) to 

remove the seasonality because at this stage it is already stationary (d = 0). And after the differentiation [seasonal 

(D=1)], we can clearly see that our series is both stationary and not seasonal (Fig-4). 

 

Fig-4: Seasonally adjusted series 

3.5. Correlograms analysis 

As we know that this series has a seasonality of 12 months (S=12) and we notice that the ACF and the PACF have 

peaks that go out of the confidence interval at offset k=12 then in this case the parameters P=Q=1, so we still have to 

find p and q. Now our model can be written as follows: 

SARIMA (p, d, q) (P, D, Q)S=SARIMA (p, 0, q) (1, 1, 1)12 

 

Fig-5: Autocorrelogram and partial autocorrelogram of the seasonally adjusted monthly wind time series. 
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To estimate the parameters, we will take the last peak that comes out of the confidence interval (horizontal line in 

blue) for each autocorrelogram and that we will consider as a reference of the maximum value.  

By viewing the PACF (Fig-5), the last peak that comes out of the confidence interval has a 15 offset so the p value 

varies from 1 to 15 (1 ≤ p≤15), and according to the ACF(Fig-5) the q value varies from 1 to 17 (1 ≤ q≤17). We’ll 

consider the peaks coming out of the confidence interval. 

3.6. Identification of the model.  

Based on previous results, the values of the selected parameters are: 

 d=0  

 D=1  

 P=1  

 Q=1 

It remains for us to combine the significant values of p and q, that is, the peaks that come out of the confidence 

interval, then find the best combination (Tab-2). 

The table presents the value of BIC for the candidates of the model to be selected. The model that gives the 

minimum Bayesian Information Criterion (BIC) is that of the SARIMA model (3, 0, 3) (1, 1, 1)12 with a BIC of 

1212.1.  

Tab-2: Comparison of the BIC value of each model 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. SARIMA (3, 0, 3) (1, 1, 1)12 Model Quality Check  

The residual autocorrelation function (RACF) and the residual partial autocorrelation function (RPACF) must be 

calculated to determine if the residues are white noise.  

The RACF and RPACF values are with in confidence limits (Fig-6.). The figures do not indicate any significant 

correlation between residues. 

SARIMA Model BIC(x10
3
) SARIMA Model BIC(x10

3
) 

(3, 0, 3)(1, 1, 1)12 1.2121 (12, 0, 3)(1, 1, 1)12 1.2500 

(3, 0, 5)(1, 1, 1)12 1.2220 (12, 0, 5)(1, 1, 1)12 1.2472 

(3, 0, 12)(1, 1, 1)12 1.2312 (12, 0, 12)(1, 1, 1)12 1.2802 

(3, 0, 17)(1, 1, 1)12 1.2557 (12, 0, 17)(1, 1, 1)12 NaN 

(5, 0, 3)(1, 1, 1)12 1.2210 (15, 0, 3)(1, 1, 1)12 1.2631 

(5, 0, 5)(1, 1, 1)12 1.2300 (15, 0, 5)(1, 1, 1)12 1.2753 

(5, 0, 12)(1, 1, 1)12 NaN (15, 0, 12)(1, 1, 1)12 NaN 

(5, 0, 17)(1, 1, 1)12 1.2727 (15, 0, 17)(1, 1, 1)12 NaN 
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Fig-6:Autocorrelogram and Partial Autocorrelogram of residues. 

The graph of the cumulative distribution for residual data normally appears as a straight line when it is carried on 

paper of normal probability (Fig-7), so the assumptions of normality of residues hold. 

 

Fig-7: The quantile-quantile plot (QQ-plot) of the residues for SARIMA (3, 0, 3) (1, 1, 1)12 

The estimation of the density of the nucleus shows no obvious violation of the normality hypothesis (Fig-8). The 

residues are normally distributed, we can accept the normality of our residues and this means that the residues are 

white noises. 
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Fig-8: Normality of SARIMA residues (3, 0, 3) (1, 1, 1)12 monthly wind 

The results of the Ljung-Box test retain the null hypothesis according to which a series of residues does not show 

autocorrelation (i.e., h=0 and p_value is 0.601). We can conclude that this is a good model. 

To confirm the homoscedasticity of our residues, we simply need to trace the ACF and the PACF of the residues 

squarely (Fig-9). According to the figure there is no peak that comes out of the confidence interval (right in blue), 

our residues are indeed homoscedastic. 

 

Fig-9:Autocorrelogram and Partial Autocorrelogram of the squared residuals. 

3.8. Validation of the SARIMA model (3, 0, 3) (1, 1, 1)12 

The various tests we performed above on the residues summarize us that: 
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 Our residues are not self-correlated  

 They follow a normal law  

 They are homoscedastic 

Our residues meet these three conditions well so they behave like white noises. This helps us validate our SARIMA 

model (3, 0, 1) (1, 1, 1)12 of the monthly wind. 

3.9. Equation of the SARIMA model (3, 0, 3) (1, 1, 1)12 

The mathematical prediction equation of the SARIMA model (3, 0, 3) (1, 1, 1)12 is given by:  

(1 − ϕ1L − ϕ2L2 − ϕ3L3)(1 − Φ12L12)Zt = (1 + θ1L + θ2L2 + θ3L3)(1 + Θ12L12)εt + cte 

is given by: 

with 

L is the delay operator,  Lxt = xt−1      ∀ t ∈ ℤ 

 

Zt = ∇0∇12
1 Xt = (1 − L12)Xt = Xt − Xt−12   ,Xt  initial series 

εtϵN(0, σ2)  is a white noises  

and the estimated regression coefficients: 

ϕ1 = −0.0419θ1 = 0.1076ϕ12 = −0.1010 

ϕ2 = −0.5113θ2 = 0.5416  ϕ12 = −0.8394 

ϕ3 = 0.1686θ3 = 0.0021cte = 0.0118 
 

3.10. Monthly wind prediction of the selected model (3, 0.3) (1, 1.1)12 

After calculating the average absolute error percentage (Mean Absolute Percentage Error or M.A.P.E), we were able 

to find the value M.A.P.E = 0.02% (M. A. P. E < 10), our forecast using the model is excellent. The figure-10 

represents the model’s prediction for the future months (from 469th to 528th months) which is a forecast to 2021. 

 

Fig-10: Adjustment of the SARIMA model (3, 0.3) (1, 1.1)12 to the monthly wind series Xt. 
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Tab-3: Future values of monthly wind speeds in Northern Madagascar in m/s 

Years Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2018 5.8 7.9 8.6 10.6 11.5 11.4 10.6 9.8 7.6 5.2 4.9 5.7 

2019 5.7 7.8 8.5 10.6 11.4 11.3 10.6 9.7 7.5 5.1 4.8 5.6 

2020 5.7 7.7 8.5 10.5 11.3 11.2 10.5 9.6 7.4 5.0 4.7 5.0 

2021 4.7 5.5 5.6 7.7 8.4 10.4 11.3 11.1 10.4 9.6 7.3 4.9 

 

4. CONCLUSION 
This work provides statistical modelling of the monthly wind speeds in Northern Madagascar and predicting future 

values until 2021. In order to optimize the exploitation of wind energy, certain measures must be taken into account. 

A poor choice of parameters may harm a wind plant or other uses. For this reason, a preliminary study phase is of 

great interest since it will be possible to identify the conditions and constraints to be taken into account when 

carrying out a wind project. 

The statistical model that generates the wind phenomenon in this region was proposed. The monthly wind speeds 

predicted in this region are regular with an average of 8.5 m/s and the trend is increasing. The study of wind speeds 

in the north of Madagascar reveals speed values, which may favour exploitation for the production of energy from 

the wind. 
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