
Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1530

Parallel DataMining of Frequent Itemsets

Using MapReduce
Jenifer.V

Assistant Professor,

KG College of Arts and Science, Coimbatore-641035, Tamilnadu, India

jenifer.anthonyammal@gmail.com
Abstract: Existing parallel burrowing counts for visit itemsets don't have a part that engages modified

parallelization, stack altering, data apportionment, and adjustment to non-basic disappointment on colossal

clusters. As a response for this issue, we diagram a parallel visit itemsets mining estimation called FiDoop using

the MapReduce programming model. To achieve pressed limit and go without building prohibitive case bases,

FiDoop combines the normal things ultrametric tree, rather than common FP trees. In FiDoop, three

MapReduce occupations are executed to complete the mining task. In the fundamental third MapReduce work,

the mappers openly separate itemsets, the reducers perform blend errands by building little ultrametric trees, and

the genuine mining of these trees autonomously. We realize FiDoop on our in-house Hadoop bundle. We

exhibit that FiDoop on the gathering is sensitive to data allotment what's more, estimations, in light of the way

that itemsets with different lengths have unmistakable rot and advancement costs. To gain ground FiDoop's

execution, we develop a workload modify metric to measure stack change over the gathering's enrolling centers.

We make FiDoop-HD, a development of FiDoop, to quicken the digging execution for high-dimensional data

examination. Wide tests using genuine perfect unearthly data delineate that our proposed course of action is

viable and flexible.

Index Terms - Frequent Pattern Growth, Apriori, Rapid Association Rule Mining (RARM), ECLAT,

Data Mining, Frequent Patterns, MapReduce.

I. INTRODUCTION

Mining of frequent itemsets (FIM) is the main problem in mining of data using sequence mining algorithm,

association rule of mining algorithm (ARM) and in the similar places. Among all types of data mining, frequent

items pattern mining in the data mining subject. There are a lot of researches have been made and lots of

efficient algorithms have been designed to search frequent pattern in the large transactional database. Agrawal et

al for the first time in 1993, has proposed a concept market-based form of analysis of pattern for finding the

relation between items that are fetched in a market places. The market-based analysis concept used the

transactional databases and other databases and repositories which collects data in order to extract association

rule's casual structures, their inter relations or frequent patterns among the dataset. Frequent patterns are the

items or itemsets which repeatedly occur in database transactions with a user-specified frequency. An itemset

whose occurrence frequency is greater than the minimum threshold will be considered as the frequent pattern.

For example in market based analysis if the minimum threshold is 30% and bread appears with eggs and milk

more than three times or at least three times then it will be a frequent itemset.

During the data mining of item pattern stage, there are different methods and techniques are used to get the

candidate keys for frequently occurring patterns and generation of frequent patterns are carried out. In this stage,

there are two main problems for mining the frequent pattern itemsets. The main problem is that the database is

required to scan every time the search is doing, and the other one is each time when it scans the database, it

generates a huge and complex dataset and it'll take huge time in scanning the same. These are the main two

drawbacks in frequent pattern mining. There are a lot of studies have performed on this and efforts have been

put to overcome and it results in finding different approaches and algorithms which are really useful. Some of the

approaches are like Apriori, FP Growth, ASPMS RARM, ECLAT algorithms etc.

II. LITERATURE SURVEY

2.1. Mining of Frequent Itemsets

The Apriori algorithm is a classic way of mining frequent itemsets in a database. A selection of Apriori-like

algorithms intention to shorten database scanning time by way of decreasing candidate itemsets. For instance,

Park et al. proposed the direct hashing and pruning algorithm to govern the number of candidate two-itemsets

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1531

and prune the database size using a hash technique. Inside the inverted hashing and pruning algorithm, every

okay-itemset inside each transaction is hashed right into a hash desk. Berzal et al designed the tree-primarily

based association rule algorithm, which employs a powerful statistics-tree structure to keep all itemsets to lessen

the time required for scanning databases.

To enhance the execution of Apriori-like calculations, Han et al. proposed a novel approach called FP-

development to abstain from creating an exorbitant number of applicant itemsets. The primary thought of FP-

development is anticipating database into a reduced information structure, and after that utilizing the gap and-

overcome technique to separate successive itemsets.

The main drawbacks of FP-development are: 1) The development of a large number of expandable FP trees

in basic memory and 2) the repeated cross of Frequent pattern trees. To overcome this problem, Tsay et al.

proposed another technique called FIUT, which depends on visit things ultrametric trees to maintain a strategic

distance from recursively crossing FP trees. Zhang et al. proposed an idea of obliged visit design trees to

generously enhance the productivity of mining affiliation rules.

2.2. Parallel Mining of Frequent Itemsets

Mining algorithms for parallel frequent itemsets related to Apriori are classified into two groups, namely,

count distribution, consists of count distribution and fast parallel mining, and parallel data mining (PDM)) and

data distribution which consists of data and intelligent data distribution. In case of count distribution group, all

candidate itemsets local support counts are calculated by individual processors of the parallel system. Then, all

processors compute the total support counts of the candidates by exchanging the local support counts. The CD

and PDM algorithms have simple communication patterns, because in every iteration each processor requires

only one round of communication. In the data distribution camp, each processor only keeps the support counts

of a subset of all candidates. Each processor is responsible for sending its local database partition to all the other

processors to compute support counts. In general, DD has higher communication overhead than CD, because

shipping transaction data demands more communication bandwidth than sending support counts.

The operation of the course in existing Apriori based mining accounts leads to an increase in indirect costs

and synchronization. In order to reduce the time required for checking databases and transacting with assured

items, parallel computations based on frequent pattern development were introduced as an alternative way to

Apriori parallel computations. Pair of parallel calculations based on FP development was activated in parallel

using multithreading on multi-core processors. A notable disadvantage of these parallel mining accounts is the

futility of developing FP-based trees when the databases are large. This issue ends with brutal and

multidimensional databases.

2.3. Parallel Data Mining on Clusters

Working groups and other multi-processor frameworks are not multiple configuration stages that address the

underlying memory issue that has arisen in parallel mining of large-scale databases. The PFP-based parallel

account limits the indirect costs of synchronization by dividing the FP tree and the list of successive components

on processors. Tang and TORCIA benefited from the extended data bases of the units and K-prefix in checking

the parallel area of the FIM budget. The new plan implementation is presented with frequent pattern trees.

III. FREQUENT DATA MINING

FI the MapReduce programming model, we design a different parallel dataset mining algorithm called

FiDoop. FiDoop's design aims to build a mechanism that enables automatic parallelization, load balancing and

data distribution for parallel mining of diverse materials on large groups. To facilitate FiDoop viewing, we

summarized the coding used in this paper in Table I. In order to improve data storage efficiency and avoid

building conditional rules, FiDoop incorporates the FIU tree concept instead of traditional FP trees. After

creating h-itemsets in stage 1, an iterative process continues to run to create k-FIU trees and search for different k

elements until a k value is reached from M to 2. In other words, the K-FIU trees are executed and k elements are

detected repeatedly. Worse, it is not common to build a K-FIU tree, the most important and time-consuming

phase. The K-FIU tree algorithm (h-itemsets) constructs the K- FIU tree by analyzing all elements h to k

elements, where k + 1 h h M. M. Then, the original k-itemsets are calculated to build the K- FIU tree. The

generation of k-decomposing elements requires all h - itemsets (h> k); thus, decomposition is performed

sequentially from long to short elements. As such, we improve the serial FIUT algorithm as follows.

1) The main period of FIUT including two rounds of examining a database is executed as two MapReduce

occupations. The primary MapReduce work is in charge of the first round of checking to make visit one itemsets.

The second MapReduce work filters the database again to produce k-itemsets by expelling occasional things in

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1532

every exchange.

2) The second period of FIUT including the development of a k-FIU tree and the revelation of incessant k-

itemsets is taken care of by a third MapReduce work, in which h-itemsets (2 ≤ h ≤ M) are straightforwardly

disintegrated into a rundown of (h − 1)- itemsets, (h − 2)- itemsets, . . . , and two itemsets. In the third

MapReduce work, the age of short itemsets is free to that of long itemsets. At the end of the day, long and short

itemsets are made in parallel by our parallel calculation. Such an advancement approach tackles the

parallelization issue of Algorithms.

The three MapReduce tasks of our proposed Fi-Doop are clarified in detail.

The primary MapReduce work finds every single incessant thing or regular one-itemsets. In this stage, the

contribution of Map undertakings is a database, and the yield of Reduce errands is all regular one-itemsets. The

second MapReduce work filters the database to produce k-itemsets by evacuating occasional things in every

exchange. The last MapReduce work—the most entangled one of the three—builds k-FIU-tree and mines all

regular k-itemsets.

To encourage the portrayal of FiDoop, we audit the affiliation govern and condense the FIUT calculation's

fundamental thought and we present the MapReduce programming structure.

Association Rules

ARM gives a key asset to choice help by extricating the most essential incessant examples that at the same

time happen in a huge exchange database. A common ARM application is advertise crate investigation. An

affiliation lead, for instance, can be "if a client purchases An and B, at that point 90% of them likewise purchase

C." In this illustration, 90% is the certainty of the run the show.

Aside from certainty, bolster is another measure of affiliation administers, every one of which is a

suggestion as X ⇒ Y. Here, X and Y are two itemsets, and X ∩ Y = ∅ . The certainty of an administer X ⇒ Y is

characterized as a proportion between support(X ∪

Y) and support(X). Note that, an itemset X has bolster s if s% of exchanges contains the itemset. We signify s =
support(X); the help of

the manage X ⇒ Y is support(X ∪ Y).

A definitive goal of ARM is to find all decides that fulfill a client indicated least help and least certainty.

The ARM procedure can be deteriorated into two stages: 1) recognizing all regular itemsets whose help is

more prominent than the base help and 2) shaping restrictive ramifications rules among the continuous itemsets.

The main stage is more testing and muddled than the second one. Accordingly, most earlier investigations are

essentially centered around the issue of finding continuous itemsets.

FIUT

The FIUT approach embraces the FIU-tree to upgrade the effectiveness of mining regular itemsets. FIU-tree

is a tree structure developed as takes after.

1) After the root is marked as invalid, an itemset p1, p2, . . . , pm of incessant things is embedded as a way

associated by edges (p1, p2), (p2, p3), . . . , (pm−1, pm) without rehashing hubs, starting with tyke p1 of the root

and consummation with leaf pm in the tree.

2) A FIU-tree is developed by embeddings all itemsets as its ways, each itemset contains a similar number

of continuous things. Along these lines, the greater part of the FIU-tree leaves are indistinguishable tallness.

3) Each leaf in the FIU-tree is made out of two fields: named thing name and check. The tally of a thing

name is the quantity of exchanges containing the itemset that is the arrangement in a way finishing with the

thing name.

Non-leaf hubs in the FIU-tree contain two fields: named thing name and hub connect. A hub connect is a

pointer connecting to youngster hubs in the FIU-tree. The FIUT calculation comprises of two key stages. The

principal stage includes two rounds of checking a database. The principal check produces visit one-itemsets by

registering the help of all things, while the second sweep brings about k- itemsets by pruning every single rare

item in every exchange record. Note that k indicates the amount of objects continuing in the exchange. In stage

two, a k-FIU-tree is over and again built by disintegrating every h-itemset into k-itemsets, where k + 1 ≤ h ≤ (M

is the maximal estimation of k), and union-ing unique k-itemsets. At this stage, the second phase begins with the

extraction of all successive materials in the light of K-FIU tree leaves without crossing the tree repeatedly.

Contrasted and the FP-development technique, FIUT altogether lessens the processing time and storage room by

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1533

deflecting overhead of recursively seeking and navigating restrictive FP trees.

MapReduce Framework

MapReduce is a programming model of parallel and adaptable operation for applications and logical

investigation. A MapReduce program communicates an extensive appropriated calculation as a grouping of

parallel tasks on datasets of key/esteem sets. A MapReduce operation has two stages, namely the Map and

Reduce stage. The Map stage parts the info information into countless, which are equitably dispersed to Map

assignments over the hubs of a group to process. Each Map errand takes in a key-esteem combine and afterward

creates an arrangement of middle of the road key-esteem sets.

After the MapReduce runtime framework gatherings and sorts all the middle qualities related with a similar

halfway key, the runtime framework conveys the transitional qualities to Reduce errand.

Table 1 Symbol and Annotation

Symbol Annotation

minsupport User-specified Minimum Support threshold

k-itemsets Itemsets containing k items

k-FIU-tree FIU tree constructed by all k-itemsets

M The maximum value of k

ISm Itemsets in which the length of each itemset is m

Algorithm:FIUT

 1.function ALGORITHM 1(A): FIUT(D, n)

2: h-itemsets = k-itemsets

generation(D, MinSup); 3:

 for k = M down to 2 do

4: k-FIU-tree = k-FIU-tree generation (h-itemsets);

5: frequent k-itemsets Lk = frequent k-itemsets generation (k-FIUtree);

6: end for

7: end function

8: function ALGORITHM 1(B): K-FIU-TREE GENERATION((h-itemsets))

9: Create the root of a k-FIU-tree, and label it as

null (temporary 0
th

 root) 10: for all (k +

1 ≤ h ≤ M) do

11: decompose each h-itemset into all possible k-itemsets, and union original k-itemsets;
12: for all (k-itemset) do

13: …build k-FIU-tree(); here,

pseudo code is omitted; 14: end

for

15: end for

16: end function

Algorithm: FiDoop-HD-MiningMap: High-Dimensional Optimization for Map() Function

Input: k-file /*k-file(2 ≤ k ≤ M) is used to store the frequent k-itemsets generated in the second MapReduce.*/

Output: (k-1)-FIU-tree

1: function

MAP(key k,

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1534

values k-file) 2:

 for all (k is

from M to 2) do

3: for all (k-itemset in k-file) do

4: decompose(k-itemset, k-1, (k-1)-itemsets);

/*Each k-itemset is only decomposed into (k-1)-itemsets */

5: (k-1)-file ← the decomposed (k-1)-itemsets union the

original (k-1)-itemsets in (k-1)-file;

6: for all (t-itemset in (k-1)-file) do

7: t − FIU − tree ← t-FIU-tree
generation(local-FIU-tree, t-itemset); 8: output(t, t-
FIU-tree);

9: end for

10: end for

11: end for

12: end function

As we know that the performance of FiDoop algorithm is very high at low dimensional databases, we need to

implement a new model or algorithm which performs well in the case of high dimensional data processing. This

method is called FiDoop-HD which is an extended version of traditional FiDoop algorithm. The proposed

fidoop-HD performs some steps over high-dimensional data processing. 1) The output data of the second

MapReduce job in FiDoop are, respectively, stored in multiple cache files according to itemset lengths. Thus, all

k-itemsets are recorded in a file named k-file, whereas all (k−1)-itemsets are written to another file named (k

− 1)-file. 2) The elements in the list of items are decomposed by Didoop-HD based on their descending of

length. After reading M- itemsets from a cache file, FiDoop-HD decomposes the M-itemsets into a list of

(M − 1)-itemsets.

IV. SYSTEM DESIGNS

4.1 Usecase Diagram And Activity Diagram

Fig. 4.1 a)Use-case diagram Fig 4.1 b) Activity Diagram

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1535

V. PROPOSED SYSTEM OVERVIEW

Fig.5.1 Architecture of Frequent itemset mapping

In the initial MapReduce job, every plotter consecutive reads every dealings from its native input split on an

information node to get native 1-itemsets. Next, world 1-itemsets square measure made by a particular reducer

that merges native 1- itemsets sharing an equivalent key (i.e., item name). The output of those reducers includes

the worldwide frequent 1-itemsets alongside their counts. The second step kinds these world frequent 1-itemsets

during a decreasing order of frequency; the sorted frequent 1-itemsets square measure saved during a cache

named FList, that becomes Associate in nursing input of the second MapReduce job in FiDoop-DP.

The second MapReduce job applies a second-round scanning on the info to repartition info to create a whole

dataset for item teams within the map section. Every reducer conducts native FP-Growth supported the partitions

to get all frequent patterns.

The last MapReduce job aggregates the second MapReduce job’s output (i.e., all the frequent patterns) to

generate the final frequent patterns for each item. For example, the output of the second MapReduce job includes

three frequent patterns, namely, ‘abc’, ‘adc’, and ‘bdc’. Using these three frequent patterns as an input, the third

MapReduce job creates the final results for each item as ‘a: abc,adc’, ‘b: abc,bdc’, ‘c: abc,adc,bdc’, and ‘d:

adc,bdc’.

An overview system consists of the following steps.

In lightweight of the MapReduce programming model, we tend to style a parallel frequent itemsets mining

rule known as FiDoop. the planning goal of FiDoop is to make a mechanism that allows automatic

parallelization, load equalization, and information distribution for parallel mining of frequent itemsets on

massive clusters.

Aiming to improve information storage potency and to avert building conditional pattern bases, FiDoop

incorporates the idea of FIU-tree instead of ancient FP trees. we tend to observe that parallelizing the serial rule

FIUT may be a challenge [see conjointly the most program of the FIUT rule in rule 1(A)]. Once h-itemsets area

unit generated in section one, associate unvarying method is repeatedly running to construct k-FIU trees and to

get frequent k-itemsets till the k price is from M to a pair of. In alternative words, the development of k-FIU trees

and therefore the discovery of frequent k-itemsets area unit dead during a consecutive manner. Even worse, it's

nontrivial to construct k-FIU-tree, that is that the most vital and time intense section. The k-FIU-tree-generation

rule (h-itemsets) [see rule 1(B)] constructs a k-FIU tree by rotten every h-itemset into k-itemsets, wherever k +

one ≤ h ≤ M. Then, the union of original k-itemsets is calculated to construct the k-FIU tree. The generation of

the k-itemsets needs rotten all doable h-itemsets (h > k); so, the decomposition method is consecutive performed

ranging from long to short itemsets. As such, we tend to improve the serial FIUT rule as follows.

1) The primary section of FIUT involving 2 rounds of scanning an info is enforced within the style of 2

MapReduce jobs. The primary MapReduce job is accountable for the primary spherical of scanning to make

frequent one itemsets. The second MapReduce job scans the info once more to come up with k-itemsets by

removing sporadic things in every dealing

2) The second section of FIUT involving the development of a k-FIU tree and also the discovery of frequent

k-itemsets is handled by a 3rd MapReduce job, during which h-itemsets (2 ≤ h ≤ M) ar directly rotten into an

inventory of (h − 1)-itemsets, (h − 2)- itemsets, . . . , and two- itemsets.

4.2 FiDoop-HD

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1536

Recognizing that FiDoop exhibits high performance for low-dimensional databases, we have a tendency to

style and implement a spatial property reduction theme to expeditiously handle high-dimensional processing.

This approach referred to as FiDoop-HD is associate degree extension of the FiDoop algorithmic program.

FiDoop-HD carries out the subsequent steps to judiciously method high- dimensional knowledge.

1) The output knowledge of the second MapReduce job in FiDoop ar, severally, keep in multiple cache files

in step with itemset lengths. Thus, all k-itemsets ar recorded in a very file named k-file, whereas all (k−1)-

itemsets ar written to a different file named (k − 1)-file.

2) FiDoop-HD decomposes the list of itemsets in a very decreasing order of itemset length. When reading M-

itemsets from a cache file, FiDoop-HD decomposes the M-itemsets into a listing of (M − 1)-itemsets. Note that,

M is that the greatest length of itemsets. Then, these itemsets mix original (M − 1)-itemsets to be keep. Next,

FiDoop-HD hundreds a cache file to store (M − 1)-itemsets, that ar rotten into (M − 2)-itemsets to be unioned

into the first (M − 2)-itemsets. This procedure is repeatedly applied till the complete decomposition method is

accomplished.

The mappers of the third MapReduce job solely decompose k-itemset into (k − 1)-itemsets instead of into

two-itemsets (see algorithmic program 6). Just in case of multiple files keep on a knowledge node, the node

consecutive hundreds and processes the files. In another algorithmic program, the price of mouldering Associate

in Nursing m-itemset into (m−1)-itemsets is shapely as cm−1 m. Given a file storing all itemsets whose length is

m, the decomposition value of the file is C(ISm) ×cm−1 m, wherever C(ISm) is that the count of belief within the

file. Hence, the time complexness of the whole method is approximated as max(C (ISi)) × (cM−1 M +cM−2

M−1 +・・・+c23), which might be any written as max(C (ISi)) × (M × (M + 1)/2), two < i ≤ M.

The time complexness of FiDoop-HD is far not up to that of FiDoop. Such a performance improvement is

clear from the experimental results. We have a tendency to conduct the measurability study victimisation

datasets that containing ten 000 000 transactions, during which the typical group action size varies anyplace

from twenty to one hundred in step twenty. As an example, reveals that our answer well improves the

performance of FiDoop. We have a tendency to implement FiDoop on a Hadoop cluster, wherever large

amounts of information ar managed by HDFS. It’s essential and demanding to handle the I/O performance

problems in FiDoop-HD thanks to the subsequent reasons. First, itemsets rotten within the previous stages ought

to be saved in new files for later phases. Second, FiDoop-HD will inherently incorporate a load-balancing

policy, as a result of every node processes the files storing itemsets with a standardized length.

5.1 Modules

1. Data Partitioning

2. MapReduce Job

3. Parallel FP-Growth

5.1.1 Data Partitioning

Data partition transactions by considering correlations among transactions and things before the

parallel mining method. That is, transactions with a good similarity are divided into one partition so as to stop

the transactions from being repeatedly transmitted to remote nodes. We have a tendency to adopt the Voronoi

diagram-based knowledge partitioning technique that is contributive to maintaining knowledge proximity,

particularly for multi-dimensional knowledge.

5.1.2 MapReduce Job

MapReduce may be a promising parallel and scalable programming model for data-intensive applications

and scientific analysis. A MapReduce program expresses an outsized distributed computation as a sequence of

parallel operations on datasets of key/value pairs.

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1537

A MapReduce computation has 2 phases, namely, the Map and scale back phases. The Map section splits the

computer file into an outsized range of fragments, that area unit equally distributed to Map tasks across the

nodes of a cluster to method. Every Map task takes during a key-value try and so generates a group of

intermediate key-value pairs

V. PROPOSED SYSTEM FEATURE AND SAMPLE OUTPUT

In this paper, we introduced a metric to measure the load balance of FiDoop. As a future research direction,

we will apply this metric to investigate advanced load balance strategies in the context of FiDoop. For example,

we plan to implement a data-aware load balancing scheme to substantially improve the load-balancing

performance of FiDoop. In one of our previous studies, we have addressed the data-placement issue in

heterogeneous Hadoop clusters, where data are placed across nodes in a way that each node has a balanced data

processing load.

Advantages

Advantageous to do verifications and forecasts of prediction patterns timely the way to remove patterns from

the uninterrupted time data stream is, splitting the original decision, converting the subsequence into a kind of

symbol data such as view pattern of featured space point), then classifying such symbol data, producing similar

product or product collection the major different is how to sales the items pruning algorithm.

Fig 9.1 Main page of the application Fig 9.2 Adding Hadoop nodes

Fig 9.3 Data distribution across the nodes

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1538

Fig 9.4 Data distribution across the nodes graph

VI. CONCLUSION

To solve the scalability and load balancing challenges in the existing parallel mining algorithms for frequent

item sets, we applied the Map Reduce programming model to develop a parallel frequent item sets mining

algorithm called FiDoop. FiDoop incorporates the frequent items ultra metric tree or FIU-tree rather than

conventional FP trees, thereby achieving compressed storage and avoiding the necessity to build conditional

pattern bases. FiDoop seamlessly integrates three Map Reduce jobs to accomplish parallel mining of frequent

item sets. The third Map Reduce job plays an important role in parallel mining.

REFERENCES

[1] Sourav S. Bhowmick Qiankun Zhao, "Association Rule Mining: A Survey," Nanyang Technological

University, Singapore, 2003.

[2] Yaling Xun, Jifu Zhang, and Xiao Qin, "FiDoop: Parallel Mining of Frequent Itemsets Using MapReduce",

IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 46, No. 3, March 2016.

[3] Shamila Nasreen, Muhammad Awais Azam, Khurram Shehzad, Usman Naeem, Mustansar Ali Ghazanfar,

"Frequent Pattern Mining Algorithms for Finding Associated Frequent Patterns for Data Streams: A

Survey," The 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks,

EUSPN-2014.

[4] J.R.Jeba, Dr.S.P.Victor, "Comparison of Frequent Item Set Mining Algorithms", International Journal of

Computer Science and Information Technologies, Vol. 2 (6) , 2011.

[5] Jiawei Han • Hong Cheng • Dong Xin • Xifeng Yan, "Frequent pattern mining: current status and future

Directions, "Data Mining Knowl Discov, vol. 15, no. I, p. 32, 2007.

[6] Iqbal Gondal and Joarder Kamruzzaman Md. Mamunur Rashid, "Mining Associated Sensor Pattern for data

stream of wireless networks," in PM2HW2N '13, Spain, 2013, p. 8.

[7] "Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm" Wikibooks, open books

for an open world.
[8] Seema Tribhuvan, Bharti. P. Vasgi, "Parallel Frequent Itemset Mining for Big Datasets using Hadoop-

MapReduce Paradigm", International Journal of Advanced Research in Computer and Communication

Engineering (ISO 3297:2007) Certified Vol. 6,

Issue 6, June 2017

[9] M.A. Azam, Loo J., Naeem, Usman and Khan, S.K.A. and Lasebae, A. and Gemikonakli Azam, "A

Framework to Recognise Daily Life Activities with Wireless Proximity and Object Usage Data", In 3rd

IEEE International Symposium on Personal, Indoor and Mobile Radio Communication 2012, Sydney,

Australia, 2012, p.6.

[10] Imielienskin T. and Swami A. Agrawal R., "Mining Association Rules Between set of items in

largedatabases", in Management of Data, 1993, p. 9.

[11] M. H. Dunham, Y. Xiao, L. Gruenwald and Z. Hossain, “A Survey of Association Rules,”

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.1602.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.1602
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.1602

Vol-7 Issue-2 2021 IJARIIE-ISSN(O)-2395-4396

13921 www.ijariie.com 1539

[12] M. Chen, and P.S. Yu J.S. Park, "An Effective Hash Based Algorithm for Mining Association Rules"

in ACM SIGMOD Int'l Conf. Management of Data, May, 1995.

[13] Yahoo! Hadoop Tutorial, http://developer.yahoo.com/hadoop/tutorial/index.html

[14] S. Ghemawat, H. Gobioff and S. Leung, “The Google File System”, in ACM SIGOPS Operating

Systems Review, vol. 37, no. 5, pp. 29-43, 2003.

[15] K-H. Lee, Y-J. Lee, H. Choi, Y. D. Chung and B. Moon, “Parallel Data Processing with MapReduce:

A Survey”, in ACM SIGMOD Record, vol. 40, no. 4, pp. 11-20, 2011.

[16] F. Kovacs and J. Illes, “Frequent Itemset Mining on Hadoop” in Proceedings IEEE 9th International

Conference on Computational Cybernetics (ICCC), Hungry, 2013, pp. 241-245.

[17] M-Y. Lin, P-Y. Lee and S-C. Hsueh, “Apriori-based Frequent Itemset Mining Algorithms on

MapReduce” in Proceedings 6th International Conference on Ubiquitous Information Management and

Communication (ICUIMC '12), ACM, New York, 2012, Article 76.

[18] S. Moens, E. Aksehirli and B. Goethals, “Frequent Itemset Mining for Big Data” in Proceedings IEEE

International Conference on Big Data, 2013, pp. 111-118.

[19] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters” in ACM

Commun., vol. 51, pp. 107-113, 2008.

[20] K-H. Lee, Y-J. Lee, H. Choi, Y. D. Chung and B. Moon, “Parallel Data Processing with MapReduce:

A Survey” in ACM SIGMOD Record, vol. 40, no. 4, pp. 11-20, 2011.

[21] X. Y. Yang, Z. Liu and Y. Fu, “MapReduce as a Programming Model for Association Rules Algorithm

on Hadoop” in Proceedings 3rd International Conference on Information Sciences and Interaction Sciences

(ICIS), 2010, vol. 99, no. 102, pp. 23- 25.

http://developer.yahoo.com/hadoop/tutorial/index.html

