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ABSTRACT 

In order to improve and enhance the production of automotive brake pad for better friction reduction, the materials 

that are practically made of reinforced composites should possess optimum physical and mechanical properties. These 

properties which consist of minimum wear rate, higher coefficient of friction, higher porosity and adequate surface 

hardness expected to produce optimal values. This study focused on the prediction and optimization of performance 

indicators of a locally made hybrid brake pad. Combinations of coconut shell, boron dust and corn husks were used 

as filler materials; phenolic resin as a binder; graphite as lubricant; silicon carbide plus copper as abrasives. During 

experimental studies, surface hardness (SH), specific wear rate (SWR) and porosity (P) was also measured. 

Optimization tools such as Design Expert, MINITAB, and SPSS were used for optimum material selection and process 

analysis. Also, responses’ reduction efficiency were obtained at 𝑃 18.792%, 𝑆𝐻 78.220ℎ𝑟/𝑠 and 𝑆𝑊𝑅 15.510 ×
10−6𝑁𝑀−3/𝑁𝑚. The reduction efficiency was predicted based on desirability function of 0.781. The reinforced 

composites produced a relative density of 1.17𝑔/𝑐𝑚3 and the mixtures were specifically measured in proportions. 

Accuracy measurements gave the value of MAPE for the model as 33.1403, MAD (0.053) and MSD (0.004). 

KEYWORDS: Prediction, Optimization, Hybrid, Brake Pad, Filler Materials, Binders, Friction Modifiers, 

Reinforcement and Composites. 

 

1. INTRODUCTION 

Brake pads are part of the components that convert the kinetic energy of a vehicle to thermal energy through friction 

[1]. Two brake pads are contained in the brake with their friction surfaces facing the rotor. During the hydraulic 

application of the brake, the caliper clamps or squeezes the two pads together onto the spinning rotor to slow and stop 

the vehicle. When a brake pad heats up due to contact with the rotor, it transfers small amounts of its friction material 

onto the disc, leaving a dull grey coating on it. The brake pad and disc (now both having the friction material), then 

"stick" to each other, providing the friction that stops the vehicle [14]. The braking system is one of the most important 

parts of any vehicle (i.e., car, bus, train, airplane, etc.) because the braking system's failure can lead to very serious 

accident which might even claim lives. Brake pads are designed mainly to achieve friction stability, durability, 

minimization of noise and vibration. Thus, the typology of the brake pads depends on the material which they are 

made [5]. From the past survey, there has been a stringent consumer’s awareness towards new products from 

renewable sources for improved automotive brake pad production [11]. New directives on recycling, social influence 

and change of cognitive values have led the consumer towards environmentally friendly products. In particular, 

composite materials are being developed and redesigned in different variations aiming to improve and adapt traditional 

products by introducing new products to achieve sustainable and responsible brake pads [8]. 

Furthermore, state-of-the-art brake pads are constituted nowadays by resin-bonded composite friction materials, these 

are specially formulated to give good friction and wear performance [2]. Research in recent times has been geared 

towards the use of industrial and agricultural waste as raw materials for the production of various engineering materials 

of which the production of brake pads has had a fair share. The carcinogenic and other health related effects associated 

with use of asbestos in brake pads production has called for the need for replacement of materials that provide brake 

pads with good mechanical properties [13]. A number of material-processing strategies have been used to improve the 

wear performance of polymers composite. Glass fiber reinforced polymeric composites 

traditionally show poor wear resistance and high friction due to the brittle nature of the reinforcing fibers. This has 

prompted many researchers to cast the polymers with fibers/fillers [10]. 

Boron is metalloid which is very commonly used in the industry. It is characterized by a high melting point. Also, it 

demonstrates low chemical activity. Boron is a good thermal and electrical isolator. Due to its advantageous properties, 

it was categorized as a friction material [12]. Boron fraction in brake pads usually does not exceed 2% of volume. It 

is hard and therefore improves the durability of the pad, which corresponds to increased wear resistance [4]. Thus, 

this research was to predict and optimize the performance indicators of the locally made hybrid brake pad using 

optimization tools like; Minitab 16, SPSS and Design Expert. 

2. METHODS 
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An average brake pad comprises of 10 to 20 different substances [6]. Selecting the right composition for the brake pad 

and predicting its impact on the final products require critical and robust approach. It requires tremendous amounts of 

research and abundant experience. The decision must also take into account the intended use of the brake pad, and 

their operating conditions. The formulations of the base materials (i.e. Boron Dust, Coconut Shell and Corn Husks) 

were subjected to treatments. It has already been observed that molding pressure, molding temperature, molding time, 

heat treatment time and heat treatment temperature that formed the input parameters play critical roles during the 

manufacturing of friction materials. Appropriate settings of those process parameters not only help in achieving the 

desired characteristics of the end products but also save manufacturing time and cost with gave birth to porosity, 

surface hardness and specific wear rate at output parameters as reported in this study.  

There was a theory propounded by [7] that selection of ideal material combination and development was not a simple 

task but a gradual process involving different material selection stages. Furthermore, two methods for material 

selection were introduced. These are the Cost per Unit Property of a material and Digital Logic Methods. These two 

methods are represented in Figure 1. 

 

Fig. 1: Material Selection Flow Chart [9] 

The application potentialities of some MCDM techniques, i.e., Entropy Method, TOPSIS and EDAS according to [3] 

was carefully explored while solving two different parametric optimization problems for friction materials in 

automotive brake applications. To optimally address the aforementioned parameters (input and output) this study made 

use of Design Expert approach. This offers comparative tests, screening, characterization, optimization, robust 

parameter design, mixture designs and combined designs. 

3. RESULTS 

Process analysis and optimization was carried out effectively and presented accordingly. The process analysis 

identifies the weaknesses and provides opportunity for improvement while the process optimization improves the 

efficiency and production processes. 

Each of the three (3) response parameters in this work was therefore analyzed and modeled accordingly. 

3.1 Analysis of Porosity (P)  

TABLE I: Fit Summary for (P) 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear 0.5562 0.7566 -0.0182 -0.1762 
 

2FI 0.0762 0.8882 0.2079 -0.3711 
 

Quadratic 0.0536 0.9676 0.3728 -0.2647 Suggested 

Cubic 0.9676 
 

-0.3685 
 

Aliased 
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Table I gave the fit summary values of porosity with Quadratic model suggested as the most suitable with the least 

sequential p-value. 

 TABLE II: Fit Statistics for (P) 

Std. Dev. 3.02 
 

R² 0.7327 

Mean 13.95 
 

Adjusted R² 0.1728 

C.V. % 21.63 
 

Predicted R² 0.0641    
Adeq Precision 6.3714 

 

The Predicted R² of 0.0641 is in reasonable agreement with the Adjusted R² of 0.1728; i.e. the difference is less than 

0.2. Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of 6.3714 indicates 

an adequate signal. This model can be used to navigate the design space. 

 

Fig. 2: Normal Plots for (P) 

Fig 2 shows the observed value on one axis (usually the horizontal axis) and the value that is expected since the data 

are a sample from the normal distribution on the other axis. The points clustered around a straight line for a normally 

distributed variable. If the data are skewed, the normal probability plot will have a very distinctive shape. 

TABLE III: Model Comparison Statistics for (P) 

PRESS 1119.22 

-2 Log Likelihood 258.97 

BIC 407.55 

AICc 437.53 

 

Table III shows the comparison statistics for porosity. In this regard, the significant advantage of the flexibility of the 

model comparison approach allows the reduction in the number of parameters of a model greatly. 
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Fig. 3: Residuals Plot for P 

The plot in Fig 3 shows that the fitted values of response are in high correlation with the actual values, which 

demonstrates an adequate signal for regression model. 

 

Fig. 4: 3D Surface Plot for P 

A surface plot is constructed from three variables as demonstrated in Figure 4. The X and Z (independent) variables 

are shown on the horizontal axes. The Y variable is shown along the vertical axis. Note that all three variables must 

be numeric. 

3.2 Analysis of Surface Hardness (SH)  

TABLE IV: Fit Summary for (SH) 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear 0.4283 0.4531 0.0022 -0.1694 
 

2FI 0.1195 0.5707 0.1836 -0.6051 
 

Quadratic 0.0094 0.8360 0.4639 -0.2416 Suggested 

Cubic 0.8360 
 

0.1755 
 

Aliased 

 

Quadratic model was also suggested for surface hardness that has the least sequential p-value as shown in Table IV. 

Adjusted R-squared and predicted R-squared have a reasonable level of agreement (within 0.2 of each other). 
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TABLE V: Fit Statistics for SH 

Std. Dev. 15.43 
 

R² 0.7715 

Mean 87.67 
 

Adjusted R² 0.4639 

C.V. % 17.60 
 

Predicted R² 0.3416    
Adeq Precision 7.9509 

 

From Table V, the Predicted R² of 0.4639 is in reasonable agreement with the Adjusted R² of 0.3416; i.e. the 

difference is less than 0.2. Adeq Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The 

ratio of 6.3714 indicates an adequate signal.  

 

Fig. 5: Normal Plots for SH 

Observing from Fig. 5, it can be seen that the points are reasonably close to the line and there are no indications of 

systematic deviations from the line, thereby indicating that the distribution of the population is reasonably close to 

normal. 

TABLE VI: Model Comparison Statistics for (SH) 

PRESS 33654.71 

-2 Log Likelihood 461.41 

BIC 609.98 

AICc 639.97 

 

Table VI shows the model comparison statistics for surface hardness. The flexibility of the model-comparison 

approach allows them to test for specific effects on the location parameters while implementing the assumption that 

slopes are not affected by constraining the estimated slopes to be equal in all conditions. 
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Fig. 6: Residual Plots for SH 

Adequacy of the model is further shown from the residual plots as shown in Fig 6, which is the normal probability 

plot for surface hardness. It can be observed that the residuals follow the normal distribution and the assumption of 

normality is valid.  

 

Fig. 7: 3D Surface Plot for SH 

This Y value in Fig 7 is a weighted average of all data values that are “near” the grid point. (The number of points 

averaged is specified to be 120.3). The three-dimensional surface is constructed using these averaged values. Hence, 

the surface plot does not show the variation at each grid point. 

3.3 Analysis of Specific Wear Rate (SWR) 

TABLE VII: Fit Summary for Specific Wear Rate (SWR) 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R² 
 

Linear 0.0901 0.5341 0.0922 -0.0668 
 

2FI 0.1123 0.6622 0.2625 -0.4770 
 

Quadratic 0.0216 0.7667 0.3742 -0.4994 Suggested 

Cubic 0.7667 
 

0.1450 
 

Aliased 

 

Table VII shown the fit summary statistics for specific wear rate, all model terms’ effects are calculated by the 

program. It produced statistics such as p-values, lack of fit and R-squared values for comparing the models where 

Quadratic model was suggested with the least sequential p-value. 



Vol-10 Issue-4 2024                IJARIIE-ISSN(O)-2395-4396 
     

24736  ijariie.com 2185 

TABLE VIII: Fit Statistics for SWR 

Std. Dev. 4.06 
 

R² 0.7333 

Mean 15.27 
 

Adjusted R² 0.1142 

C.V. % 26.59 
 

Predicted R² 0.0994    
Adeq Precision 6.7001 

 

Considering the fit statistics for specific wear rate in Table VII, the Predicted R² of 0.0994 is in reasonable agreement 

with the Adjusted R² of 0.1142; i.e. the difference is less than 0.2. Adeq Precision measures the signal to noise ratio. 

A ratio greater than 4 is desirable. The ratio of 6.7001 indicates an adequate signal. This model can be used to navigate 

the design space. 

 

Fig. 8: Normal Plots for SWR 

It can be observed in Fig 8 that the residuals follow the normal distribution and the assumption of normality is valid.  

TABLE IX: Model Comparison Statistics for SWR 

PRESS  2409.13 

-2 Log Likelihood 295.82 

BIC 444.39 

AICc 474.38 

 

Table IX is the model comparison statistics for specific wear rate. By the principle of parsimony one should select the 

most restrictive assumptions that can reasonably expect to be valid. Another factor to consider is whether the data 

contain sufficient information to estimate the slope parameter which was ascertained. 
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Fig. 9: Residual Plot for SWR 

Figure 9 is a plot of the residuals versus the predicted response values. The constant variance shows that the plot is 

randomly scattered and the residuals has a constant range.  

 

Fig. 10: 3D Surface Plot for SWR 

The plot in Fig 10 is useful in regression analysis for viewing the relationship among a dependent and two independent 

variables. The multiple regressions assumed that this surface is a perfectly flat surface. Hence, the surface plot visually 

indicates that the multiple regressions are appropriate. 

3.4 Process Optimization 

Optimization analysis is one the methods employed in this study which is a method of optimizing the subject under a 

variety of predefined physical constraints. There are several types of optimization methods and their use requires an 

understanding of the subject, system of constraints and a general direction for the solution. Optimization tools enabled 

the improvement of design stages, shortening convergence processes and streamlining development stages.  

3.4.1 Numerical Responses 

Numerical optimization is another technique used to determine the optimum conditions of the operating variables in 

this study. In addition to the design points, a set of random points are checked to see if there are more desirable 

solutions. 

 

TABLE X:  Design Constraints 
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Name Goal Lower 

Limit 

Upper 

Limit 

Lower 

Weight 

Upper 

Weight 

Importance 

A:Coconut Shell maximize 38 52 1 1 3 

B:Boron Dust maximize 18 26 1 1 3 

C:Corn Husks maximize 36 44 1 1 3 

D:Copper maximize 41 48 1 1 3 

E:Graphites maximize 5 12 1 1 3 

F:Silicon 

Carbides 

maximize 4 11 1 1 3 

G:Phenolic Resin maximize 35 48 1 1 3 

       

       

       

       

       

P maximize 7.92 22 1 1 5 

SH maximize 40.05 120.3 1 1 5 

SWR maximize 6.045 22.78 1 1 1 

 

Maximization goal was employed where the lower limits are the lowest acceptable outcomes and the upper limits are 

desired best results. Based on the response surface and desirability function, optimal values for the factors’ reduction 

efficiency were obtained and recorded. 

3.4.2 Graphical Responses 

Graphical optimization displays the area of feasible response values in the factor space.  

 

Fig. 11: Desirability Curve for the Factors 

Based on the desirability method, the analysis has been performed. The attained perturbation graph of desirability 

(Fig. 11) displays that the arrangement of process parameter levels consuming the maximum desirability of 0.781 of 

the actual factors is optimal. 
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Fig. 12: Desirability Curve for P 

Selected points with the highest desirability values for porosity (P) response are shown in Fig 12. 

 

Fig. 13: Desirability Curve for SH 

Figure 12 show the overall desirability for this solution that gave a value of 18.792. All responses are predicted to be 

within the desired limits. This confirmed the optimal solution, indicating that small variations around x* are predicted 

to not change the overall desirability drastically. 

 

Fig. 14: Desirability Curve for SWR 
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Figure 14 maximized desirability such that the experimental factors are constrained to be within a spherical design 

region with a radius equal to the axial point distance. The High control point is positioned at the maximum Y value 

and aligned at the high desirability, close to 1. The Low control point is positioned at the minimum Y value and 

aligned at a low desirability, close to 0. 

TABLE XI: Point Prediction 

Solution 

1 of 100 

Response 

Predicted 

Mean 

Predicted 

Median 

Observed Std 

Dev 

SE 

Mean 

95% 

CI low 

for 

Mean 

95% 

CI high 

for 

Mean 

95% TI 

low for 

99% 

Pop 

95% TI 

high 

for 

99% 

Pop 

P 18.7916 18.7916 
 

3.01632 5.01387 8.4855 29.0978 -

1.06292 

38.6462 

SH 78.2202 78.2202 
 

15.4344 25.6558 25.484 130.956 -23.375 179.815 

SWR 15.5103 15.5103 
 

4.06003 6.74877 1.63805 29.3826 -

11.2143 

42.235 

 

A prediction interval summary was displayed in Table XI which shows larger values than the confidence interval 

because there are more scattered points expected from a small sample that estimates the average versus the entire 

population’s true mean. 

TABLE XII: Model Confirmation 

Solution 1 

of 100 

Response 

Predicted 

Mean 

Predicted 

Median 

Observed Std 

Dev 

N SE 

Pred 

95% PI 

low 

Data 

Mean 

95% PI 

high 

P 18.7916 18.7916 
 

3.01632 1 5.85124 6.76425 
 

30.8191 

SH 78.2202 78.2202 
 

15.4344 1 29.9406 16.6764 
 

139.764 

SWR 15.5103 15.5103 
 

4.06003 1 7.8759 -

0.678796 

 
31.6995 

 

Model Confirmation in Table XII was intended to be used to confirm that the model can predict actual outcomes at 

the optimal settings determined from the analysis. Additional (n) runs are conducted at the optimal settings. The 

average of those runs is compared to the prediction interval for a sample of size n.  

4. DISCUSSION 

The samples prepared for this study were formulated using the rule of mixture. The practical density that was gotten 

from the samples through the rule of mixture theorem indicates that the combination of Coconut Shell, Boron Dust 

and Corn Husks as reinforced composites produced a relative density of  1.17𝑔/𝑐𝑚3.  

Figures 2, 5 and 8 represented the normal plots for the responses. In the normal distributions, the data was 

symmetrically distributed with no skew. That is, data was aligned closely to the dotted lines which indicate a normal 

distribution. These are the scatterplots with the quartiles of the scores on the horizontal axis and the expected normal 

scores on the vertical axis. 

The graphical plots and statistical test of the residuals are examined and presented in Figures 3, 6 and 9. Judgments 

are made based on these examinations which further confirmed the validity of the models. The residuals are estimates 

of experimental error obtained by subtracting the observed responses from the predicted responses. 

The percentage contribution of each control factor is employed to measure the corresponding effect on the quality 

characteristic. Tables I, II, IV, V, VII and VIII showed the results of the statistics with the model responses. These 

https://www.sciencedirect.com/topics/mathematics/scatterplot
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analyzes was undertaken for a level of significance of 5% that is, for level of confidence 95%. The parameters in the 

fits summary tables indicate the order of significance among factors and interactions. These statistical values are 

presented as; P (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0536), SH (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0094) and SWR (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.0216). 

From Response Surface Regression Parameters as shown in design constraints Table X, this model responses exhibit 

first-order regression model across all the statistical parameters which is the reason for the fitted response surface to 

be plane. The optimal values for the factors’ reduction efficiency were obtained and recorded. 

From the desirability curves in Figures 11, 12, 13 and 14, the overall desirability for this solution is 0.781. All 

responses are predicted to be within the desired limits. The model shows optimal solution, indicating that small 

variations around x* are predicted to not change the overall desirability drastically. Thus, minimum specific wear rate 

for the developed composites is obtained when the sliding velocity and normal load are at the lowest level, also filler 

content and sliding distance are at the highest level.  

5. CONCLUSION 

The locally made hybrid brake pads of an automotive brake system are designed by first, determining its frictional 

materials, ascertain the wear behavior of the materials selected and finally modeled the output responses to determine 

how it affects the performance. These performance indicators has been analyzed and optimized to compete favorably 

with mechanical properties of commercial brake pads. 
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