
Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3893

Prevention techniques of code

injection/vulnerabilities for web applications

Bonny A. Thacker
Student, Computer Engineering (Network Security), GTU PG School, Ahmedabad, Gujarat, India

ABSTRACT

Security remains a major challenge to the entire web community. Web-applications are easily compromised due to

security reason. Moreover, one of the major reason for exploitation of web application is user input i.e. user input is

being processed in an unsafe manner.

SQL injection has been a threat for more than 15 years, so it is astonishing to recognize that it is still one of the top

data threats to organizations. SQL Injection is an attack used to exploit user applications that build SQL statements

from user-supplied input. Proper neutralization of special characters used in an SQL Command is needed to avoid

the SQL injection. Existing IDS base prevention system working on predefined rules but they are not enough and

stable. So, in order to prevent web application database from SQL Injection Attack, we propose a prevention

technique.

In this Prevention Technique, threat logs are generated of the attacker using SNORT. Attackers request will forward

and log in Honeypot. From the Honeypot, a Block list would be created; this list will be blocked by iptables in Web

Application Machine. If an attacker is successful to bypass a layer of SNORT, MAC address of the attacker will be

blocked in iptables and the database is already secured with ASCII which will not allow any attacker to attack the

database.

Keyword: - SQL injection, honeypot, snort, iptables, SQL injection prevention technique

1. INTRODUCTION

1.1 SQL INJECTION:
SQL Injection attack is a kind of code injection technique which exploits the vulnerability present in the application

code for gaining the unauthorized access to the data. The effects of SQL injection attacks are a modification of data,

destroying some fields of data, unauthorized access to data, stealing of data, dropping down the entire database, etc.

The types of SQL Injection attacks are:

 Tautologies

 Union Query

 Piggy-Backed Queries

 Illegal/Logically Incorrect Queries

 Stored Procedures

 Blind SQL Injection

1.1.1 Tautology:

This technique is inserting the string which makes the query always true. Then the query always returns upon

evaluation of WHERE condition. For Example, an attacker submits “ ’ or 1=1 - -” for the input field. The code

injected in the conditional (or 1=1) transforms the entire WHERE clause into a tautology.

1.1.2 Union query:
An attacker injects a UNION SELECT to trick the application into fetching data from a table. Attackers do this

by injecting a statement of the form: UNION SELECT rest of injected query.

1.1.3 Piggy-backed query:

The original query is followed by and extra query which will harm the database. In this type of attack, the

attacker injects malicious code with traditional queries and also performs data manipulation operation like

lNSERT, UPDATE and DELETE clause for manipulating a record.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3894

Figure 1: SQL injection Example

1.1.4 Error Based Query (Logically incorrect query):

This type of attack represents the SQL manipulation category in which attacker can get advantage from error

message which is generated by the database server. In fact, the generated error messages can often reveal

vulnerable/injectable parameters to an attacker.

1.1.5 Stored Procedure:

SQL Injection of this type tries to execute stored procedures present in the database. To launch an SQLIA, the

attacker simply injects “’; SHUTDOWN; - -” into either the userName or password fields.

1.1.6 Blind SQL Injection:

In these types of attacks, an attacker can steal data from database asking true and false questions through SQL

statement. Classical blind exploitation is based on the analysis of the true/false logical expression. If the expression

is true, then the web application will return certain content, and if it is false, the application will return some other

content.

1.2 HONEYPOT:

The honeypot project was started with kept in mind to observe the activities of the attackers. A honeypot is nothing

but a system which is created to emulate the services that are executed on the server in order to observe the patterns

of the attacks. A honeypot is used for the purposes like production or researchers.

1.3 ASCII:

ASCII stands for American Standard Code for Information Interchange. The computer can only interact with

numbers, so to identify A or $ or any other character or symbol or any events like opening a file. Use of ASCII value

in the normal database is like add 2 new columns of the username ASCII value and password ASCII value. These

columns will give prevention for an injection attack.

2. PROBLEM STATEMENT

One of major issue with a web application is its security. Nowadays, web applications are easily compromised due

to security reason. Moreover, one of the major reason for exploitation of web application is user input i.e. user input

is not filtered properly. All the data provided by a user must be treated as untrustworthy.

Major threats are being produced in database domain and one of the major issues is SQL injection. Proper filtration

of special characters used in an SQL query is needed to avoid the SQL injection. There are different

techniques/process such as hashing, query transmission inputs from the users, header sanitization, an algorithm for

analyzing, etc are being used by the developer. However, all these techniques are not fully protective.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3895

One of the key issues is IDs rules. Automatic updations of IDS rule are not possible. To update the IDS rule, there

are manual interventions required. A technique needs to be evolved to overcome this issue as well as also a time-

saving approach to reducing manual work.

3. PROPOSED WORK
Snort IDS need to be placed. Initially, a request will be triggered to the proxy server while attacking (by web

attacker) attempts to enter into a web server. As shown in below, the IDS will match the existing attack as per

received request. On basis of request and matching signature, IDS will take a decision regarding dropped or allowed

to access the real web server.

In a genuine database server, when the user enters login credentials that values are converted into ASCII value and

compared with stored ASCII signature in the database server. In the event that the match found the user will be

permitted to get access to the genuine database server and web application, otherwise, that attacker’s request will be

sent to the honeypot server.

In honeypot, that attacker’s request will be tracked, monitored and logs will be generated. If any SQL injection is

encountered here, Using those logs, IP address and MAC address of the attacker will be extracted and stored in the

database. Those IP address and MAC address of the attacker will be blocked using iptables. Then new snort

signature is generated and the snort rule will be updated to the IDS.

Figure 2: Proposed prevention technique Figure 3: Flow chart of proposed prevention technique

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3896

4. EXPERIMENTAL SCENARIO

We have created a replica of web server1 to execute the process of SQL injection. Login credentials are stored in

ASCII value. SNORT is implemented here which has the rule to alert about SQL Injection from any IP. Below

Figure shows that SQL injection is encountered here and the attacker is logged in.

Figure 4: Logged on Screen by SQL Injection

Attack Detection - In the bellow figure the alerts generated by snort IDS is shown as a result of SQL injection

attack on the web server.

Figure 5: SQL injection-Tautology Query detected by snort rule

Figure 6: Log of Snort detecting SQL Injection

We have created another web server2 for Glastopf installation to prevent real database. After

SQL Injection detection, the attacker’s request will be sent to the honeypot. Attacker’s request is

tracked and monitored in the honeypot. In the screenshot of the logs, it can be seen that the attack

was attempted by the IP address 192.168.92.128 which is the IP address of the attacker machine.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3897

Figure 7: Logs from Glastopf

The attacker’s IP address and MAC address are extracted and stored in the database using the python script. The

outcome of the script is shown in below figure.

Figure 7: Result of the script

The List of the IP address and MAC address of the attacker will be sent to the web server1 where snort is

implemented. Those IP address and MAC address of the attacker will be blocked using iptables. Then new snort

signature is generated and the snort rule will be updated to the IDS.

Figure 8: Send block list to the web server

Figure 8: Script to block the IP and MAC addresses

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4784 www.ijariie.com 3898

5. CONCLUSION

Security remains a major challenge to the entire web community. One of the major reason for exploitation of web

application is user input i.e. user input is being processed in an unsafe manner. SQL injection has been a threat for

more than 15 years, so it’s astonishing to recognize that it’s still one of the top data threats to organizations. SQL

injection vulnerability allows an attacker to flow commands directly to a web application's underlying database and

destroy functionality or confidentiality. The proposed work will secure the database server from the attacker.

Honeypot will lure the attackers and generate the database of the attacker. If the attacker can bypass the IDS, the

ASCII protected database still will be safe. From the Honeypot a Block list is generated on the web server, which

will block by iptables rules. Another layer of the security is added by blocking IP address and MAC address of the

attacker. So, Layers of security can maintain confidentiality and integrity of secure web application.

6. REFERENCES

[1] Rui Silva, “Testing Snort with SQL Injection Attacks”, 2016 ACM

[2] Hussein Alnabulsi, School of Comp & Mathematics, Charles Sturt University, Albury, NSW, Australia,

“Detecting SQL Injection Attacks Using SNORT IDS”, 2014 IEEE

[3] Mahima Srivastava, “Algorithm to Prevent Back End Database against SQL Injection Attacks”, 2014 IEEE

[4] FX Arunanto, Baskoro Adi Pratomo, “Aggressive Web Application Honeypot for Exposing Attacker's Identity”,

2014 1st International Conference on Information Teclmology, Computer and Electrical Engineering (ICITACEE),

2014 IEEE

[5] Hudan Studiawan, FX Arunanto, Baskoro Adi Pratomo, “SQL Injection Detection and Prevention System with

Raspberry Pi Honeypot Cluster for Trapping Attacker”, 2014 International Symposium on technology management

and emerging technologies(ISTMET), May 27-29, 2014 IEEE

