
Vol-6 Issue-6 2020               IJARIIE-ISSN(O)-2395-4396 
   

13063 www.ijariie.com 149 

RANDOM GENERATION OF A GENOCCHI 

PERMUTATION 

 
Lala Arimonjy Ramelina

1
, Falimanana Randimbindrainibe

2
 

 
1
 Assistant lecturer, Ecole Doctorale Science et Technique de l’Industrie et de l’Innovation, University of 

Antananarivo, Antananarivo, Madagascar 
2
 Professor, Ecole Doctorale Science et Technique de l’Industrie et de l’Innovation, University of 

Antananarivo, Antananarivo, Madagascar 

 

ABSTRACT 

 
A recursive method to generate Genocchi permutations is yet to be proposed. On the one hand, this work aims to 

provide a random generation of a Genocchi permutation and on the other hand, to call upon a free software to 

allow the use of this permutation in applied aspects such as the queue management or any other related 

perspectives. 
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1. INTRODUCTION 

The numbers of Genocchi are defined as series of numbers that are useful for some advanced enumerations such as 

Dumont permutations; in which each even number is followed by a smaller number; then each odd entry is followed 

by a larger number (an ascent) or ends the string [1]. Researches on Genocchi permutations have missed to offer a 

recurrent method for generating them. However, Dumont [1] has demonstrated that they can be enumerated from 

Genocchi numbers. The aim of this work is to propose a random generation of these permutations using the finesse 

of the Python language (free software) in order to apply this issue for instance in queue management. 

 

1.1 Genocchi numbers 

Genocchi numbers can appear in diverse fields such as number theory, asymptotic analysis, differential topology and 

modular form theory. Yet, their combinatorial properties still require further work. 

The following formula is a recall that Genocchi numbers are defined by the relation [1]: 

2𝑡

𝑒𝑡 + 1
= 𝑡 + ∑(−1)𝑛𝐺2𝑛

𝑡2𝑛

(2𝑛)!
𝑛≥1

 . 

It is observed that the relations between Bernoulli numbers 𝐵2𝑛 and tangent numbers 𝑇2𝑛−1 are described 

respectively by following equations and the first values of these three series of numbers are indicated in the Table 1. 

 

𝑡

𝑒𝑡 − 1
= 1 −

1

2
𝑡 + ∑(−1)𝑛+1𝐵2𝑛

𝑡2𝑛

(2𝑛)!
𝑛≥1

  

and 

tan 𝑡 = ∑ 𝑇2𝑛−1

𝑡2𝑛−1

(2𝑛 − 1)!
 .

𝑛≥1
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Thus, we obtain 

𝐺2𝑛 = 2(22𝑛 − 1)𝐵2𝑛  

and 

22𝑛−2𝐺2𝑛 = 𝑛𝑇2𝑛−1 . 

Table -1: First values of the three series of numbers from Bernoulli numbers and tangent numbers and Genocchi 

numbers 

 

𝒏 1 2 3 4 5 6 7 

𝑮𝟐𝒏 1 1 3 17 155 2073 38227 

𝑩𝟐𝒏 1

6
 

1

30
 

1

42
 

1

30
 

5

66
 

691

2730
 

7

6
 

𝑻𝟐𝒏−𝟏 1 2 16 272 7936 353792 223582256 

 

1.2 Calculation of Genocchi numbers 

Dumont and Viennot [1] have developed a straightforward method for calculating Genocchi numbers. The exterior 

of the stair-shaped graph is filled with the number 0 (see Figure 1). The number 1 is placed on the innermost left 

side. A number in an even index column is obtained by adding the number to its left and the number above it. 

Similarly, a number in an odd index column is obtained by adding the number to its left and the number below it. 

Genocchi numbers are the numbers at the top of the staircase. Note that Dumont gave the first combinatorial 

interpretations of Genocchi numbers in terms of Genocchi permutations. 

 
Fig -1: Stair-shaped graph showing the calculation of a Genocchi number 

 

2. PERMUTATION ALGORITHMS 

A permutation is defined by the rearrangement of 𝑛 elements, the number of permutations is then given by 𝑛!. [2] 

Establishing 𝒮𝑛 , the set of permutations of {1,2, ⋯ , 𝑛}, for any permutation 𝜎 of 𝒮𝑛 , this last is defined by: 

 

𝜎 = (
1 2

𝜎(1) 𝜎(2)

⋯ 𝑛
⋯ 𝜎(𝑛)) 

For the next step, we will adopt the following linear structure 

𝜎 = 𝜎(1)𝜎(2) ⋯ 𝜎(𝑛). 

To generate a permutation, several algorithms can be used. Three main algorithms are cited, named Insertion 

algorithm, Heap algorithm and Steinhaus-Johnson-Trotter or SJT algorithm. 
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2.1 Insertion algorithm 

First, a permutation of length 𝑛 − 1 is set, after searching for all potential permutation, 𝑛 is inserted in the possible 

spaces of each permutation of length 𝑛 − 1 to have all permutations of length 𝑛. [2] 

 

Fig -2: Structure of a permutation by insertion for four elements  

2.2 Heap Algorithm 

Given a permutation of length 𝑛, the first element is fixed and the rest is permuted. In that sense, the first element is 

also fixed and the others are permuted. The same process is repeated until only two elements remain (length 2) and 

they can be simply exchanged. [2] 

 
2.3 Steinhaus-Johnson-Trotter Algorithm 
Classical algorithm permutations were based on a lexicographical order (alphabetical or ascending for numbers) and 

they proceed through a propagation way. The Steinhaus-Johnson-Trotter algorithm (like the Heap algorithm) 

delivers a permutation in a particular order [2]. This algorithm works by direct routing among all permutations. 

First of all, the elements are written in ascending order for instance: 1, 2, 3. 

Each element is given the same direction at the beginning: 1⃖ , 2⃖ , 3⃖ . 
A number is categorized as mobile if the number pointed to by its arrow is smaller: here 3 and 2 are mobile. The 

following operations with several steps can then be conducted.  

 Step 1: choose the largest moving element and swap with the neighbor pointed by its arrow 1⃐ , 3⃐ , 2⃐ ; 
 Step 2: check whether there are other, larger mobile in the rank. If so, change their direction (in the case 

above, there is none) 

 Step 3: continue with the largest element under treatment 3⃖ , 1⃖ , 2⃖ ;  

When the mobile element can no longer move, then go back to step 1 and repeat the whole process. 3⃖ , 2⃖ , 1⃖ ; 

 Step 4: since 3 is greater than 2, then the direction of 3 will be reversed 3  , 2⃖ , 1⃖ ; 

 Step 5: the element 3 becomes again the largest mobile 2⃖ , 3  , 1⃐ ; 

 Step 6: the process provides a new permutation possibility 2⃖ , 1⃖ , 3  ; 
 Step 7: the process ends when there are any mobile elements. 
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In brief, the whole process remains into setting the elements in an ascending order. As long as there is a moving 

element, it is always possible to find the largest moving element 𝑀; switch this number 𝑀 and its pointed 

neighbor; and change the direction of all numbers greater than 𝑀. 

 

3. GENOCCHI PERMUTATIONS 

A permutation 𝜎 ∈ 𝒮2𝑛 is called a Genocchi permutation [3] if 𝜎(2𝑖 − 1) > 2𝑖 − 1, 𝜎(2𝑖) ≤ 2𝑖 for 𝑖 ∈ {1,2, ⋯ , 𝑛}. 
The sets of Genocchi permutations of {1,2,⋯,2n} will be then denoted as 𝒢2𝑛.  
As an example, we set a pemutation 𝜎 represented by the following equation : 

𝜎 = (
1 2
4 2

3 4
7 1

5 6
6 5

7 8
8 3

) 

 

It can be seen that 𝜎 ∈ 𝒢8, and this is represented by the graph below. 

 
 

Fig -3: Graphic representation of a Genocchi permutation 

 

Note that, for any permutation 𝜎 ∈ 𝒢2𝑛, there is always 𝜎(2𝑛 − 1) = 2𝑛 and Dumont has demonstrated that 

card( 𝒢2𝑛) = 𝐺2𝑛+2  

3.1 Generation of a Genocchi permutation 

Let’s propose a method to build a Genocchi permutation 𝜎 of size 2𝑛. It is sufficient to find the first 2𝑛 − 2 terms 

since 𝜎(2𝑛 − 1) is always equal to 2𝑛 and 𝜎(2𝑛) would be the number that was set apart during the permutation 

construction. 

Considering the following construction that includes two row matrixes where: 

 The matrix 𝐶 = [1,2, … ,2𝑛 − 2] in which the first 2𝑛 − 2 terms of 𝜎 will be randomly chosen; 

 The matrix B is empty at the beginning and will be filled progressively by the elements of 𝜎. 

As an instance, we will create a Genocchi permutation of size 8 with the following scripture 

𝜎(1)𝜎(2)𝜎(3)𝜎(4)𝜎(5)𝜎(6)𝜎(7)𝜎(8). For that, we certainly have 𝜎(7) = 8 and 𝜎(8) is the last number, it is 

noticed that for this last one, there is no flexibility in the choice for the number. Understanding that 𝜎(2𝑖 − 1) >
2𝑖 − 1 and 𝜎(2𝑖) ≤ 2𝑖 for 𝑖 ranging from 1 to n, we start by constructing the odd index elements from the largest to 

the smallest, then the even index elements from the smallest to the largest. 

In details, below is the proposed procedure for generating the Genocchi permutation. 

 The choice of 𝜎(5) comes from 𝐶 = [1,2,3,4,5,6,7] with the condition that 𝜎(5) > 5. Given that 𝜎(5) = 6 

is selected, the matrix 𝐵 becomes 𝐵 = [6] and 6 will no longer appear in 𝐶. We then obtain 𝐶 =
[1,2,3,4,5,7]. 

 If 𝜎(3) = 7, 7 is inserted at the beginning of 𝐵, both 𝐵 and 𝐶 become respectively 𝐵 = [7,6], 𝐶 =
[1,2,3,4,5]. 

 If 𝜎(1) = 2, 𝐵 becomes 𝐵 = [2,7,6] and 𝐶 will be 𝐶 = [1,3,4,5] ; 
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 As 𝜎(2) ≤ 2, let’s choose 𝜎(2) = 1. We insert 𝜎(2) at the 2nd place in 𝐵, consequently we have 

respectively for 𝐵 and 𝐶, 𝐵 = [2,1,7,6] and 𝐶 = [3,4,5]. 
 If we set 𝜎(4) = 4, we insert 𝜎(4) in the 4th place in 𝐵 and the two matrixes will be respectively, 𝐵 =

[2,1,7,4,6] and 𝐶 = [3,5]. 
 If 𝜎(6) = 3, the two matrixes will therefore be represented respectively as the following 𝐵 = [2,1,7,4,6,3] 

and 𝐶 = [5]. 
 Finally, we just need to insert 𝜎(7) = 8 and 𝜎(8) = 5. The linear representation of 𝜎 will then be 

21746385. 

3.2 Generation of a Genocchi permutation using Python  

A random generation of a Genocchi permutation is possible using free software like Python. The flexibility in the 

setting provides more freedom to program the permutation algorithms. The principle detailed in section 3.1 is kept, 

yet some syntaxes are necessary to run the software and they are listed below following by their meaning. 

 

 c=list(range(1,2*n)) means the matrix 𝐶 = [1,2, . . . ,2𝑛 − 1] is initialized. In this setting, the last element of 

𝐶 is 2𝑛 − 1. 

 random.shuffle(c): this instruction is performed to randomly shuffle the elements of 𝐶. In the rest of the 

program, the first element of 𝐶 is always chosen after it has been randomly shuffled. 

 d=t[0]: this command imports the value 𝑡[0] into the variable d. The 𝑡 matrix is temporarily a copy of the 

last 𝐶 matrix. This copy is issued from the command t=c.copy( ). 

 b.insert(0,d): this command inserts the value of 𝑑 at the beginning of the matrix 𝐵 indexed by 0. For 

example, an instruction of type b.insert(4,d) means the insertion of the value 𝑑 in row 4 − 1 = 3. The size 

of the matrix 𝐵 increases depending on each input and this is the advantage of this free programming 

languages software. 

 c.remove(d): it means removing the item of value equal to the value 𝑑. The size of the matrix 𝐶 decreases 

in size after this instruction. 

 b.append(c[0]): this command adds element 𝑐[0] to the last row of the matrix 𝐵. 

 

With Python, we have the following program: 
    n=int(input('Give n = ?  ')) 

    c=list(range(1,2*n)) 

    random.shuffle(c) 

    b=[] 

    i=2*n-3 

    while i>=0: 

        t=c.copy() 

        d=t[0] 

        t.remove(d) 

        while d<=i: 

            random.shuffle(t) 

            d=t[0] 

            t.remove(d) 

        b.insert(0,d) 

        c.remove(d) 

        del d 

        i-=2 

    x=2 

    while x<2*n: 

        t=c.copy() 

        d=t[0] 

        t.remove(d) 

        while d>x: 

            random.shuffle(t) 

            d=t[0] 

            t.remove(d) 

        b.insert(x-1,d) 

        c.remove(d) 

        del d 

        x+=2 

    b.append(2*n) 

    b.append(c[0]) 

    print('A Genocchi permutation of size ',2*n,' is : ') 
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    print(b) 

Fig -4: A program to generate randomly a Genocchi permutation using free software Python 

 

To illustrate the workflow in randomly generating Genocchi permutation, the following permutation (size equals 8) 

is set to [2, 1, 6, 4, 7, 3, 8, 5]. Same as the previous example, we provide 10 Genocchi permutations of size 2 × 4 =
8 randomly chosen by the program as cited below: 

 

[2, 1, 4, 3, 6, 5, 8, 7] 

[2, 1, 4, 3, 7, 6, 8, 5] 

[3, 2, 5, 4, 6, 1, 8, 7] 

[6, 1, 4, 2, 7, 5, 8, 3] 

[3, 1, 5, 4, 6, 2, 8, 7] 

[2, 1, 5, 3, 7, 6, 8, 4] 

[2, 1, 5, 4, 7, 6, 8, 3] 

[3, 1, 6, 2, 7, 5, 8, 4] 

[3, 1, 4, 2, 6, 5, 8, 7] 

[3, 2, 7, 1, 6, 5, 8, 4] 

 

It is noticed that there is no instance of repetition in that data of 10 permutations. This case shows the efficiency of 

generating pseudo-random numbers by Python. Recall that for 𝑛 = 4, the number of Genocchi permutations of size 

8 is 155. By varying the integer n from 5 to 10, we can have the result below: 

 

[6, 1, 4, 2, 9, 5, 8, 7, 10, 3] 

[3, 1, 5, 2, 6, 4, 11, 8, 10, 9, 12, 7] 

[4, 2, 5, 3, 6, 1, 10, 8, 13, 9, 12, 11, 14, 7] 

[2, 1, 5, 3, 12, 4, 8, 7, 13, 9, 14, 10, 15, 6, 16, 11] 

[3, 2, 5, 1, 6, 4, 9, 7, 10, 8, 12, 11, 14, 13, 17, 16, 18, 15] 

 

In these examples, all the elements are distinct 2 by 2 and the conditions are always verified. For a fairly large 

numbers, there are no particular difficulties shown by the program except for the execution time, which is a bit 

extended. 

This parameter time can be calculated in advance. In that sense, the "time" module with the instruction "time.time()" 

is used to give the execution time of a series of instructions expressed in seconds. If the starting time of the 

execution is defined by t1= time.time(), and the end by t2= time.time(), the duration is given by t2-t1.  

For a comparative analysis according to the computer processor and the size of input data, the table below 

summarizes the execution time in seconds of generation of a Genocchi permutation. 

 

Table -2: Summary of the execution time (in second) needed by the software in performing Genocchi permutation 

for a range of large numbers depending on the computer processor  

 

Permutation 

Size 
100 200 300 400 500 600 700 800 900 1000 

Pentium dual 

core 32 bits 
0.036 0.14 0.312 0.577 0.952 1.607 1.685 2.621 3.806 4.368 

Intel core i5 64 

bits 
0.016 0.109 0.266 0.285 0.447 0.688 1.095 1.409 1.866 2.134 

 

A graph illustrates the execution time in function of the size of the Genocchi permutation.  



Vol-6 Issue-6 2020               IJARIIE-ISSN(O)-2395-4396 
   

13063 www.ijariie.com 155 

 
Fig -5: Graph showing the evolution of time duration in generating Genocchi permutation according to different 

computer processor 

 

The continuing line curve represents the result obtained using "intel core 15 64-bit" processor which is obviously 

faster in execution than a "pentium dual core 32-bit". In both cases, the curves are generally increasing, but represent 

irregularities. The latter are due to the randomness of the generation of integers according to precise conditions: the 

number of loops performed is also random. We thus propose average durations for each permutation size to have 

much more precision and instead of giving a value for one size, it would be preferable to give the average of the 100 

durations for one size. The table summarizing the time execution of the program is thus below as well as the 

corresponding graph. 

 

Table -3: Summary of the execution time (in second) needed by the software in performing Genocchi permutation 

for 100 durations in one size depending on the computer processor  

Permutation Size 100 200 300 400 500 600 700 800 900 1000 

pentium dual core 32 

bits 
0,021 0,112 0,279 0,556 0,916 1,404 2,001 2,752 3,573 4,601 

intel core i5 64 bits 0,01 0,051 0,132 0,265 0,442 0,671 0,965 1,387 1,75 2,188 

 

For both curves, the evolution is more regular. It is recalled that the average time to generate a Genocchi 

permutation of length 2000 is 10.515 seconds, which means the processor "intel core i5 64-bit" requires 1051.5 

seconds or 17 minutes 31.5 seconds to perform the calculation. 

 
Fig -6: Graph showing the evolution of time duration in generating Genocchi permutation according to different 

computer processor with some averaging (average of 100 durations for one size) 
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4. CONCLUSION 

In summary, this work suggests a random generation of the Genocchi permutations. If previous researches have 

calculated the number of permutations from Genocchi numbers, they have failed in providing randomly their 

combination. Thus, this study has highlighted a random generation of a Genocchi permutation. This work has 

promoted the utilization of free software in generating permutation. The choice of the software Python remains in its 

flexibility in programming and more automatism in the randomization. However, the time execution can be 

challenging depending on the computer processor type. The present work has provided – a random generation of a 

Genocchi permutation - has promoted its use in applied aspects such the queuing management. 
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