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ABSTRACT 
 

The bus arrival time is primary information to most city transport travelers. Excessively long waiting time at bus 

stops often discourages the travelers and makes them reluctant to take buses.This paper presents a bus detection 

system using RFID technology that aims to ease the traveling and movement of people.  In the bus detection 

subsystem, the nearby stations will be easily detected and then display by LCD inside the bus. The RF transmitter in 

every bus can read the code from RF receiver which is present in the bus stops. And also the security system is 

managed inside the bus using GSM module. For example, if the gas leaked in bus, using the gas sensor warn the bus 

driver and also send the message to the main office through the GSM.  

 

Keyword: Radio Frequency   Identification (RFID),   Peripheral   Interface Controller (PIC), Global System 

for Mobile Communication (GSM),Global Positioning System(GPS) 

 
1. INTRODUCTTION 

 PUBLIC transport, especially the bus transport, has been well developed in many parts of the world. The bus 

transport services reduce the private car usage and fuel consumption, and alleviate traffic congestion. As one of the 

most comprehensive and affordable means of public transport, in 2011 the bus system serves over 3.3 million bus 

rides every day on average in Singapore with around 5 million residents. 

When traveling with buses, the travelers usually want to know the accurate arrival time of the bus. Excessively 

long waiting time at bus stops may drive away the anxious travelers and make them reluctant to take buses. 

Nowadays, most bus operating companies have been providing their timetables on the web freely available for the 

travelers. The bus timetables, however, only provide very limited information (e.g., operating hours, time intervals, 

etc.), which are typically not timely updated. Other than those official timetables, many public services (e.g., Google 

Maps) are provided for travelers. Although such services offer useful information, they are far from satisfactory to 

the bus travelers. For example, the schedule of a bus may be delayed due to many unpredictable factors (e.g., traffic 

conditions, harsh weather situation, etc). The accurate arrival time of next bus will allow travelers to take alternative 

transport choices instead, and thus mitigate their anxiety and improve their experience. Towards this aim, many 

commercial bus information providers offer the realtime bus arrival time to the public. Providing such services, 

however, usually requires the cooperation of the bus operating Companies (e.g., installing special location tracking 

devices on the buses), and incurs substantial cost. 

In this paper, we present a novel bus arrival time prediction system based on crowd-participatory sensing. We 

interviewed bus passengers on acquiring the bus arrival time. Most passengers indicate that they want to instantly 

track the arrival time of the next buses and they are willing to contribute their location information on buses to help 

to establish a system to estimate the arrival time at various bus stops for the community. This motivates us to design 

a crowd-participated service to bridge those who want to know bus arrival time (querying users) to those who are on 
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the bus and able to share the instant bus route information (sharing users). To achieve such a goal, we let the bus 

passengers themselves cooperatively sense the bus route information using commodity mobile phones. In particular, 

the sharing passengers may anonymously upload their sensing data collected on buses to a processing server, which 

intelligently processes the data and distributes useful information to those querying users. 

Our bus arrival time prediction system comprises three major components: (1) Sharing users: using commodity 

mobile phones as well as various build-in sensors to sense and report the lightweight cellular signals and the 

surrounding environment to a backend server; (2) Querying users: querying the bus arrival time for a particular bus 

route with mobile phones; (3) Backend server: collecting the instantly reported information from the sharing users, 

and intellectually processing such information so as to monitor the bus routes and predict the bus arrival time. No 

GPS or explicit location services are invoked to acquire physical location inputs. 

In the following of this paper, we first introduce the background and motivation in Section 2. In Section 3, we detail 

the challenges of our system and describe our technical solutions. The evaluation results are presented in Section 4. 

We perform a trial study in London and the results are shown in Section 5. The related works are described in 

Section 6. We summarize this paper in Section 7. 

2. BACKGROUND AND MOTIVATION 

The bus companies usually provide free bus timetables on the web. Such bus timetables, however, only provide very 

limited information (e.g., operating hours, time intervals, etc.), which are typically not timely updated according to 

instant traffic conditions. Although many commercial bus information providers offer the realtime bus arrival 

information, the service usually comes with substantial cost. With a fleet of thousands of buses, the installment of 

invehicle GPS systems incurs tens of millions of dollars. The network infrastructure to deliver the transit service 

raises the deployment cost even higher, which would eventually translate to increased expenditure of passengers. 

For those reasons, current research works explore new approaches independent of bus companies to acquire transit 

information. The common rationale of such approaches is to continuously and accurately track the absolute physical 

location of the buses, which typically uses GPS for localization. Although many GPS-enabled mobile phones are 

available on the market, a good number of mobile phones are still shipped without GPS modules. Those typical 

limitations of the localization based schemes motivate alternative approaches without using GPS signal or other 

localization methods. Besides, GPS module consumes substantial amount of energy, significantly reducing the 

lifetime of power-constrained mobile phones. Due to the high power consumption, many mobile phone users usually 

turn off GPS modules to save battery power. The mobile phones in vehicles may perform poorly when they are 

placed without line-of-sight paths to GPS satellites. 

 

 

 

 

 

 

 

 

 

 

 

Fig -1: Absolute localization is unnecessary for arrival time prediction. 

 

2.1 SYSTEM DESIGN 

Though the idea is intuitive, the design of such a system in practice entails substantial challenges. In this section, we 

describe the major components of the system design. We illustrate the challenges in the design and implementation, 

and present several techniques to cope with them. 

2.1.1 SYSTEM ARCHITECTURE 
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Querying user. As depicted in Fig. 2 (right bottom), a querying user queries the bus arrival time by sending the 

request to the backend server. The querying user indicates the interest bus route and bus stop to receive the predicted 

bus arrival time .Sharing user. The sharing user on the other hand contributes the mobile phone sensing information 

to the system. After a sharing user gets on a bus, the data collection module starts to collect a sequence of nearby 

cell tower IDs. The collected data is transmitted to the server via cellular networks. Since the sharing user may travel 

with different means of transport, the mobile phone needs to first detect whether the current user is on a bus or not. 

As shown in Fig. 2 (left side), the mobile phone periodically samples the surrounding environment and extracts 

identifiable features of transit buses. Once the mobile phone confirms it is on the bus, it starts sampling the cell 

tower sequences and sends the sequences to the backend server. Ideally, the mobile phone of the sharing user 

automatically performs the data collection and transmission without the manual input from the sharing user. 

 

 

 

 

 

 

 

 

 

 

 

Fig -2: System architecture 

 

2.1.2 BUS DETECTION  

Am I on a Bus? During the on-line processing stage, we use the mobile phones of sharing passengers on the bus to 

record the cell tower sequences and transmit the data to the backend server. As aforementioned, the mobile phone 

should intelligently detect whether it is on a public transit bus or not and collect the data only when the mobile 

phone is on a bus. Some works [16], [18] study the problem of activity recognition and context awareness using 

various sensors. Such approaches, however, cannot be used to distinguish different transport modes (e.g., public 

transit buses and non-public buses). In this section, we explore multi-sensing resources to detect the bus 

environment and distinguish it from other transport modes. We seek a lightweight detection approach in terms of 

both energy consumption and computation complexity. 

2.1.3 BUS CLASSIFICATION 

When a sharing user gets on the bus, the mobile phone samples a sequence of cell tower IDs and reports the 

information to the backend server. The backend server aggregates the inputs from massive mobile phones and 

classifies the inputs into different bus routes. The statuses of the bus routes are then updated accordingly. 

2.1.3.1.CELL TOWER SEQUENCE MATCHING 

We match the received cell tower sequences to those signature sequences store in the database. Fig. 9 shows an 

illustrative example where a sharing passenger gets on the bus at location A. The backend server will receive a cell 

tower sequence of 7, 8, 4, 5 when the sharing user reaches location B. Say that the cell tower sequence of the bus 

route stored in the database is 1, 2, 4, 7, 8, 4, 5, 9, 6, then the sequence 7, 8, 4, 5 matches the particular bus route as a 

sub-segment as shown in Table 1. In practical scenarios, the sequence matching problem becomes more complicated 

due to the varying cell tower signal strength. Recall that for each sub-route we record the top-3 cell tower IDs 

instead of the connected cell tower ID in the pre-processing period. We let each mobile phone send back the 

sequence of cell towers that the mobile phone has connected to. In the matching process on the server, we 

accordingly devise a top-k cell tower sequence matching scheme by modifying the Smith-Waterman algorithm [28]. 

Smith-Waterman is a dynamic programming algorithm for performing local sequence alignment which has been 

widely used in bioscience (e.g., to determine similar regions between two nucleotide or protein sequences). 

We make concrete modifications on the original algorithm to support the top-k cell tower sequence matching. We 

weigh a matching of a cell tower ID with a top-k set according to the cell tower signal strength. Say that in a top-k 
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set S = {c1,c2,...,ck} ordered by signal strength (i.e., si ≥ sj, 1 ≤ i ≤ j ≤ k), where ci and si denote cell tower i and its 

signal strength, respectively 

 

 

 

 

 

 

Fig- 3. Cell tower sequence matching. 

We denote the uploaded cell tower sequence from a sharing user as Sequpload = u1u2 ...um where m is the sequence 

length. We also denote a cell tower set sequence in database as Seqdatabase = S1S2 ...Sn where n is the set sequence 

length. If ui = cw ∈ Sj, ui and Sj are considered matching with each other, and mismatching otherwise. We assign a 

score f(sw) for a match, where f(sw) is a positive non-decreasing scoring function and w is the rank of signal strength. 

In practice, we use f(sw) = 0.5
w
−

1 
as the scoring function according to the signal strength order in the set. The penalty 

cost for mismatches is set to be an empirical value of −0.5 which balances the robustness and accuracy in practice. 

We choose top-3 cell tower IDs with strongest cell tower signal strength to form a set based on our initial 

observations (Sectio3.2). The distinctive advantage of the proposed classification algorithm is its robustness to the 

variation of cell tower signal strength. Table 2 shows a cell tower set sequence matching instance. In the example, 

the uploaded cell tower sequence is Sequpload = 1, 8, 10, 15, 16, and the cell tower ID set is shown in the first three 

rows sorted in decreasing order of the associated cell tower signal strength. 

Table 1 : Cell Tower Sequence Matching 

 
After running the sequence matching algorithm across all bus route sequences in the database, the backend server 

selects the bus route with the highest score. If the highest matching score is smaller or the sequence length is shorter 

than our empirical thresholds, the backend server postpones the updates to avoid errors. Intuitively, the small highest 

matching score would be due to mistriggering of sharing phones uploading cell tower sequence not from interested 

bus routes (e.g., rapid trains, private cars, etc). Too short cell tower sequence may not be informative since the 

misclassification rate of such short sequence is high and thus the backend server postpones the classification and the 

updating process until the sequence excesses the empirical threshold (which will be elaborated later). 

One problem of the cell tower sequence matching is that some bus routes may overlap with each other. The mobile 

phones on the overlapped road segments are likely to observe similar cell tower sequences. Since many buses 

typically arrive at and depart from several major transit centers, such overlapping road segments among different 

bus routes are common. 
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We survey 50 bus routes in Singapore and measure their overlapped road segments using Google Maps. Fig. 10(a) 

plots the distribution of the lengths of overlapped road segments, which suggests that over 90% of the overlapped 

route segments are shorter than 1400 meters, and over 80% are less than 1000 meters. Considering that the coverage 

range of each cell tower in urban area is about 300-900 meters, we set the empirical threshold of cell tower sequence 

length to 7. 

The below graph plots the cell tower sequence matching accuracy in classifying the bus routes. We vary the length 

of uploaded cell tower sequence from 2 to 9. We find that the matching accuracy is low when the cell tower 

sequence length is small (e.g, <4) largely because of the problem of route overlap. We observe that when the cell 

tower sequence length reaches 6, the accuracy increases substantially to around 90%. When the cell tower sequence 

length is larger than 8, the experimental results are reasonably accurate and robust. 

 

 

 

 

 

 

 

Fig-4. Overlaped routes and matching accuracy with varying sequence length. (a) CDF of the overlapped route 

length. (b) Matching accuracy with varying sequence length. 

 

2.1.3.2 CELL TOWER SEQUENCE CONCATENATION: SOLVING JIGSAW PUZZLES 

In many practical scenarios, the length of the cell tower sequence obtained by a single sharing user, however, may 

be insufficient for accurate bus route classification. An intuitive idea is that we can concatenate several cell tower 

sequences of different sharing users on the same bus to form a longer cell tower sequence. In Fig. 11, both cell tower 

sequences of sharing user A and B are short, while by concatenating the two cell tower sequences the backend 

server may obtain an adequately long cell tower sequence which can be used for more accurate bus classification. A 

simple way of concatenating the cell tower sequences is to let the mobile phones of sharing passengers locally 

communicate with each other (e.g., over Bluetooth) [20]. This approach, however, mandates location exposure 

among sharing passengers and might raise privacy concerns. We thereby shift such a job to the backend server. 

Recall that the mobile phone needs to collect audio signals for bus detection (Section 3.3.1). Here, we reuse such 

information to detect whether the sharing passengers are on the same bus for cell tower sequence concatenation. At 

each bus stop, normally several passengers enter a bus and multiple beeps of the IC card readers can be detected. 

The time intervals between the consecutive beep signals fingerprint each bus in the time domain. Fig. 5 depicts an 

instance of the audio signals captured by three different mobile phones on the same bus. We depict the raw audio 
signals in Fig. 5(a), and corresponding frequency domain signals in Fig. 5(b)–(d). Compared with the time domain 

signal, the frequency domain signal is robust against the background noise (e.g., though signal strength increases are 

observed in 1kHz frequency band around 0.8s, the signal strengths in 3kHz frequency band remain low). We can see 

that in the frequency domain the signals are highly cross correlated and thus can be used to determine whether the 

phones are on the same bus. Specifically, the time intervals observed by three mobile phones are all approximately 

dT1 and dT2 in Fig. 5. We therefore use the time intervals between the detected beeps to determine whether multiple 

mobile phones are on the same bus. In our system, the mobile phones of sharing users keep sampling the audio 

signal and record the time intervals between the detected beeps. Such beep interval information is reported along 

with the cell tower sequences to the backend server. 

Receiving the uploaded sensing data from sharing passengers, the backend server detects and groups the sharing 

passengers on the same bus by comparing both cell tower sequences and the time intervals of the beep signals. The 

backend server concatenates the pieces of cell tower sequences from the same bus and forms a longer cell tower 

sequence. 



Vol-3 Issue-2 2017   IJARIIE-ISSN(O)-2395-4396   

4066 www.ijariie.com 529 

2.2 ARRIVAL TIME PREDICTION 

After the cell tower sequence matching, the backend server classifies the uploaded information according to 

different bus routes. When receiving the request from querying users the backend server looks up the latest bus route 

status, and calculates the arrival time at the particular bus stop. 

 

 

 

 

 

 

 

Fig-5. Time intervals of audio indication signals. 
 

 

 

Fig-6. Bus arrival time prediction. 

Fig.6 illustrates the calculation of bus arrival time prediction. The server needs to estimate the time for the bus to 

travel from its current location to the queried bus stop. Suppose that the sharing user on the bus is in the coverage of 

cell tower 2, the backend server estimates its arrival time at the bus stop according to both historical data as well as 

the latest bus route status. The server first computes the dwelling time of the bus at the current cell (i.e., cell 2 in this 

example) denoted as t2. The server also computes the traveling time of the bus in the cell that the bus stop is located 

denoted as tbs. The historical dwelling time of the bus at cell 3 is denoted as T3. The arrival time of the bus at the 

queried stop is then estimated as follows, 

T = T2 − t2 + T3 + tbs. 

Without loss of generality, we denote the dwelling time in cell i as Ti, 1 ≤ i ≤ n, the bus’s current cell number as k, 

and the queried bus stop’s cell number as q. 

The server can estimate the arrival time of the bus as follows, 

q−1 

T  tq. i=k 
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The server periodically updates the prediction time according to the latest route report from the sharing users and 

responds to querying users. The querying users may indicate desired updating rates and the numbers of successive 

bus runs to receive the timely updates. 

3. IMPLEMENTATION AND EVALUATION 

We implement a prototype system on the Android platform with different types of mobile phones, and collect the 

real data over a 7-week period. We first present the experiment environment and methodology. We test the 

performance of each system component individually to evaluate the design feasibility. We test the bus detection 

techinique and route classification method. When we evaluate the whole system performance, i.e., the accuracy of 

arrival time prediction, all the components are working together. 

3.1 EXPERIMENTAL METHODOLOGY 

Mobile phones. We implement the mobile phone applications with the Android platform using Samsung Galaxy S2 

i9100 and HTC Desire. Both types of mobile phones are equipped with accelerometers and support 16-bit 44.1kHz 

audio signal sampling from microphones. The Samsung Galaxy S2 i9100 has a 1GB RAM and Dual-core 1.2GHz 

Cortex-A9 processor, while the HTC Desire has a 768MB RAM and 1GHz Scorpion processor. For most of our 

experiments, we base on the SingTel GSM networks in Singapore. 

Experiment environment. Public bus transit system serves millions of bus rides every day covering most parts of 

Singapore. The public bus transit system is supervised by Land Transport Authority (LTA) of Singapore and 

commercially operated mainly by two major public transport providers, SBS Transit and SMRT Corporation. Many 

other transit means coexist with the public bus system. Mass Rapid Transit (MRT) trains form the backbone of the 

railway system. There are also tens of thousands of taxicabs operated by commercial companies and individual taxi 

owners. IC cards are widely used for paying transit fees. Several card readers are deployed for collecting the fees on 

SBS and SMRT public buses and at entrance gates of MRT stations. 

3.2 BUS DETECTION PERFORMANCE 

The experiment results suggest that the audio based method effectively detects the beep signal on the bus when the 

distance between the IC card reader and the mobile phone is within 3 meters. Considering that the entrance gate of 

the bus is about 1.4 meters wide, when a sharing user enters a bus, the mobile phone would be normally less than 1 

meter away from the IC card reader. Notice that our system tolerates some missing beeps because there are multiple 

opportunities to detect the audio when other passengers are tapping their cards. 

3.3 ARRIVAL TIME PREDICTION 

We present the final bus arrival time prediction results based on above estimations. We collect the campus bus traces 

using a high accurate vehicle GPS navigator as the benchmarks. In the same buses, we collect cell tower sequences 

using two mobile phones and stored the sequence in memory stick for our later trace-driven study. 

3.4SYSTEM OVERHEAD 

Mobile phone. In order to maintain the sample resolution and remove the noise, we extract the audio signal with 

sliding widows with the window size of 32. We record the audio signal at the sampling rate of 8kHz, and use n = 

128pt FFT to convert the time domain audio signals to frequency domain signals. The major computational 

complexity is attributed to performing FFT on mobile phones which is O(n log n). Current mobile phones can finish 

the computation task in realtime. For example, it takes approximately 1.25ms and 1.8ms on average to finish to 

128pt FFT on Samsung Galaxy S2 i9100 and HTC Desire, respectively. 

4. CONCLUSIONS 

In this paper, we present a crowd-participated bus arrival time prediction system. Primarily relying on 

inexpensive and widely available cellular signals, the proposed system provides cost-efficient solutions to the 

problem. We comprehensively evaluate the system through an Android prototype system. Over a 7-week 

experiment period, the evaluation results demonstrate that our system can accurately predict the bus arrival time. 

Being independent of any support from transit agencies and location services, the proposed scheme provides a 
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flexible framework for participatory contribution of the community. For a particular city, the only requirement of 

our system implementation is that there exist a backend server and an IC card based bus system. 

Future work includes how to encourage more participants to bootstrap the system because the number of sharing 

passengers affects the prediction accuracy in our system. This common issue of crowd-sourced solutions is 

largely influenced by the penetration rate and popularity of the services. One may actively promote the service to 

reach a critical penetration rate so as to ensure that at least one sharing user is on the bus willing to report the bus 

status. At the initial stage, we may encourage some specific passengers (like the bus drivers) to install the mobile 

phone clients. 
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