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ABSTRACT 
In this article, we will see the advantages of the proposed methods which reside on the use of the standard form. 

That allows great flexibility in formatting problem. The combination of the  approach and the μ-analysis which is 

a tool to analyze the robustness of a large family of uncertain linear systems and finally the use of the robust 

analysis method associated with the development of the optimal modal control to find the placement range of the 

achievable poles in the stability region which is delimited by a generally open boundary that models the movements 

of the sea with respect to a boat. 
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1. INTRODUCTION 

 We will devote ourselves to the application of robust analysis techniques of linear systems applied to the analytical 

model of marine craft (boat). The simulations presented aim to use a numerical tool for analyzing the robustness of 

linear systems. We present for the analytical model of the boat, the nominal model used, the uncertainties envisaged, 

the stability domain D and the numerical results obtained during the simulation. 

 

 

2. DEGREES OF FREEDOM AND MOTION OF A MARINE CRAFT 
In maneuvering, a marine craft experiences motion in 6 degrees of freedom (DOFs). The DOFs are the set of 

independent displacements and rotations that specify completely the displaced position and orientation of the craft. 

The motion in the horizontal plane is referred to as surge (longitudinal motion, usually superimposed on the steady 

propulsive motion) and sway (sideways motion). Yaw (rotation about the vertical axis) describes the heading of the 

craft. The remaining three DOFs are roll (rotation about the longitudinal axis), pitch (rotation about the transverse 

axis) and heave (vertical motion). 
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Fig-1: Motion in 6 degrees of freedom (DOF). 

  

3. THEOREM OF ROBUSTNESS IN PERFORMANCE 

The introduction between the input vector  and the output vector of a fictitious error  matrix with  

makes possible the transformation of the robustness analysis scheme into performance into a stability analysis 

diagram. We then obtain the block diagram of Fig-1. 

 

Fig -1: Block diagram of the disturbed system with introduction of the fictitious error model 

 

By isolating respectively the model errors and , we obtain the block diagram of the Fig-2. 

 

Fig -2: Block diagram of the disturbed system for performance robustness analysis 

 

The system of Fig-2 is stable for any matrix  such as , if and only if: 

                    

(1)  

Inequality (1) is equivalent to: 

 (2)  

With 

 
(3)  
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3. STRUCTURED SINGULAR VALUES 

The notion of structured singular values is introduced to deal with robustness in the case of structured model 

uncertainties. 

Let us define  the set of complex matrices presenting the same structure as the uncertainty matrix and 

satisfying : 

 
(4)  

The uncertainty matrix comprises F stable transfer matrices of any structure, r real so-called scalar repetitive 

blocks (the scalar is repeated once to take account of the corresponding uncertainty) and complex c scalars 

repeated with: 

-  and checking the normalization condition   

- and checking the normalization condition   

-   and checking the normalization condition     

-  

4. D- ROBUST STABILITY 

4.1 General  

The system is said to be D -stable if all its poles closed-loop  transfer matrix are within a region D belonging 

to the left complex half-plane. 

We will say that the state matrix A is D -stable if and only if all its eigenvalues are strictly contained within the 

region D of the left complex half-plane. 

The system is said to be robust D -stable if all the poles of the transfer matrix  are within a region D 

belonging to the left complex half-plane. 

4.2 The various stability regions 

We present in this section some regions of stability D. A stability region is shown in Fig- 3. It is an arbitrary set of 

points of the left complex plane bounded on the right by a boundary defined by: 

 RC  ),(, fjssD  (5)  

In this case the set can be described by inequality: 

 RC  ,)(, 0fjssD  (6)  
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Fig -3: Region of stability 

 

4.3 Stability regions D where stability margins are desired 

The simple condition of stability does not guarantee the proper operation of the slave system. An ideal looped 

system is defined as that for which the true difference remains practically nil in all circumstances, that is, for which 

the transitory regimes must be rapid and well amortized. Under these conditions, therefore it must be avoided that 

the dominant poles of the system are too close to the origin of the complex plane. The transient behavior of a looped 

system strongly depends on the nature and position of its poles (real or complex). For a stable system, we are 

looking for: 

• a short response time; 

• a sufficient damping so that the index overruns are low: it is then necessary that the damping factor is 

between 0 and 1 (the problem of the damping concerns the systems whose dominant mode of the answer is 

governed by a pair of complex poles conjugates). 

To satisfy the above conditions, we impose margins of security in the position of the poles of the looped system in 

the zone of the negative reals of the complex plane: these are the margins of absolute stability and relative stability. 

First case: asymptotic stability margin Fig-4 

 

Fig -4: Region of stability D to ensure asymptotic stability margin 

 R ,, 0CsD  (7)  

Second case: Margin of absolute stability 

 R ,0,Cs 0D  (8)  
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Fig -5: Stability region to ensure absolute stability margin 

 

To avoid too long response times, we set a line D parallel to the axis , to the right of which we must not find 

poles. 

 

Third case: Relative stability margin 

 

 R ,0tan.,CsD  (9)  

The relative stability margin relates to the damping factor, and that only occurs in the case of complex poles. 

 

 
Fig -6: Stability region to provide relative stability margin 

Fourth case: Absolute and relative stability margins 

 R ,0tan.00 etCsD  (10)  

 
Fig -7: Stability region D to ensure margins of absolute stability and relative stability 



Vol-5 Issue-2 2019        IJARIIE-ISSN(O)-2395-4396 

9531 www.ijariie.com 243 

5. ROBUST ANALYSIS OF THE ANALYTICAL MODEL OF MANEUVERING A BOAT BY 

THE µ-ANALYSIS WITH A CORRECTOR K OBTAINED BY SYNTHESIS  

Matrix of transfer of the maneuver of the boat is represented by: 

 

A and B being a partitioned matrix, we get: 

 

The linearized model is useful for frequency analysis of rudder-roll damping (RRD) systems. For simplicity 

consider a ship with one rudder   and  

 

With: , , such as:  is the electric constant; and (Constant mass of the boat) 

Mechanical constant) 

 

5.1 Transfer function of the nominal system 

The nominal values of the parameters of the electric motor are: , , and . The 

transfer function of the analytical model of maneuver of a boat is written in the following form: 

)sT1)(sT1(s

k
)s(G

e


 
(11)  

5.2 Calculating the Corrector by H-infinite synthesis 

The calculation of the corrector  is obtained by using a classical synthesis method which is the resolution of the 

standard problem  by the Riccati matrix equations. 

Corrector  obtained by synthesis  has the function of transfer: 

)
19500
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(12)  

Note: We can note that the corrector is relatively high (order 4) and has a pole in -0.050, so very close to the origin 

and a pole very far in the complex left half-plane, in -19500. Its influence is negligible on frequency responses. 

5.3 Nominal stability of the boat 

The shape of the amplitude and phase diagrams of the frequency response of the open-loop transfer function 

 shows that the looped system is nominally stable and that the responses of the open-loop transfer comply 

with the specifications. . The corrector  adjusts the gain so that the transfer in open loop passes to  for 

 and ensures correct margins of stability. 
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Chart -1: Frequency responses of   

The gain and phase margins of the corrected open-loop transfer function  are equal to  and  

respectively. 

Table -1: Characteristics of the nominal loop system with  

Real part Imaginary Part Frequency Damping 

-29,379 0 29,379 1 

-41,085 -60,989 73,536 0,55870 

-41.085 60,989 73,536 0,55870 

-145,41 0 262,47 1 

-262,47 0 972,07 1 

-19500 0 19500 1 

 

The poles of the nominal looped system are given in Table-1. We can notice that all the poles have a real part lower 

than -29,379 and that the complex poles have a damping higher than . The looped system is therefore 

nominally stable. 

 

5.4 Nominal performance of the boat 

Chart-2 shows the frequency responses of the sensitivity function  the complementary sensitivity 

function , the inverse of the weighting function and the structured singular value   

 

Conclusion: The nominal performance condition is verified:  

)j(w

1
)j(S

1 
  (13)  

 Thus, the nominal performance is considered satisfactory because according to figure-9, we have:  

R    1)]j(M[ pnpn


 (14)  
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Chart -2: Frequency responses  

5.5 Robustness in stability 

Simulation diagram of the disturbed looped system: 

 
Fig-8: Block diagram of the perturbed system based on the with unstructured uncertainties and structured 

uncertainties  

Figure-10 represents the simulation diagram of the analytical model of maneuvering a ship with unstructured 

uncertainties and structured uncertainties. By isolating the uncertainties ,  and , we obtain the analysis 

scheme of the robustness in stability with structured uncertainties of the figure-9. 

 
Fig-9: Stability robustness analysis diagram  

By collecting the three uncertainties in a single block, we obtain the following uncertainty matrix:  

 Tk2rs ;;diag)s(    

 
Chart-3: Robustness of the position of the poles ensuring an asymptotic stability margin (μ-analysis): 
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Conclusion: The computation of an upper bound and a lower bound of the structured singular value   of 

the looped system ensuring an asymptotic margin, for s traversing the imaginary axis leads to the curves of figure-

12. When the parameters  and  of the analytical model of maneuver of a ship with direct current present 

 of uncertainties ( ), the upper bound μ of the singular value structured is equal to 1 for 

a pulsation of , we deduce that the robustness in stability is guaranteed for all , thus 

for the following domain of uncertainties: 

VsrdkVsrd //500
~

//22   (15)  

and  msTms 30
~

5.1  . (16)  

5.5 Robustness in performance 

 

Chart-4: Robustness in the performance of the perturbed looped system (μ-analysis) 

Conclusion: The computation of an upper bound and a lower bound of the structured singular value  of 

the looped system providing an asymptotic margin for the analysis of the robustness in performance leads to the 

curves of Chart-4. When the parameters  and  of the analytical model of maneuver of a ship present uncertainties 

( ), the upper bound μm of the singular value structured is  for a pulsation 

of , from this we deduce that robustness in performance is not guaranteed. 

In the case where the parameters k and T have an uncertainty of the order  (Chart-5), then the looped system is 

robust in performance for all , thus for the following domain of uncertainties: 

VsrdkVsrd //260
~

//220   (17)  

and msTms 5,16
~

14  . (18)  

 
Chart-5: Robustness in looped system performance (μ-analysis) 
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Note: In the case of Chart-4, as the  value is greater than 1, we can not guarantee the performance robustness of 

the disturbed looped system for the proposed template ( But this robustness in performance is ensured by 

reducing the range of uncertainties of the parameters of the analytical model of maneuvering a boat (Chart-5). 

 

5.6 Absolute stability margin of the analytical model of a boat 

 
Chart-6: Robustness of the position of the poles ensuring a margin of absolute stability (μ-analysis) 

Conclusion: The calculation of an upper bound and a lower bound of the structured singular value of 

the looped system providing an absolute margin, for traversing the boundary D leads to the curves. When the 

parameters and  of the analytical model of maneuver of a boat present  of uncertainties 

( ), the upper bound  of the singular value structured is equal to 1 for a pulsation de 

, from this we deduce that robustness in stability is guaranteed for all , therefore for 

the following range of uncertainties: 

VsrdkVsrd //300
~

//180   (19)  

and   msTms 20
~

10  . (20)  

5.7 Relative stability margin of the analytical model of a boat 

 

 
Chart-7: Robustness of the position of the poles ensuring a margin of relative stability (µ-analysis) 
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From this we deduce that robustness in stability is guaranteed for , so for the following uncertainties: 

 

                                    VsrdkVsrd //380
~

//130   (21)  

and                                                   msTms 5,20
~

8  .    (22)  

5.8 Absolute and relative stability margins of the analytical model of a vessel 

 

Chart-8: Robustness of the position of the poles ensuring an absolute and relative stability margin (μ-analysis) 

From this we deduce that robustness in stability is guaranteed for , so for the following 

uncertainties: 

 

VsrdkVsrd //300
~

//175   (23)  

and  msTms 18
~

11  . (24)  

5.9 Stability robustness analysis by the analysis of the analytical model of a boat 

We then obtain the structured singular value curve of Chart-9 by scanning on and for the =0.045 and 

weighting functions. 

 
Chart-9: Robustness of the position of the poles of the disturbed system (μ-analysis) 

Conclusion: We obtain a maximum singular value equal to the unit which is the limit of the robustness in D-stability 

for a pulsation of 62 rad / s. From this we deduce that the stability of the disturbed looped system is guaranteed for 

everything , therefore for the following domain of uncertainties: 
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VsrdkVsrd //245
~

//230   (25)  

and msTms 95,15
~

25,14  . (26)  

5.9 Uncertainties on the parameters ,  and  

By collecting the uncertainties in a single block, the uncertainty matrix of stability stability is now: 

 22 ;;)( IIdiags TeTkrs   (27)  

By isolating these uncertainties we obtain the stability stability analysis schema with structured uncertainties 

 

Fig-10: Scheme of analysis of the robustness in stability of the disturbed system 

The calculation of the upper bound of the structured singular value of the looped system with 

uncertainties on the parameters ,  and  leads to the curve. 

 
Chart-10 : Robustesse du placement des pôles (µ-analyse) 

The robustness in stability is then studied by considering the possible cases of parametric variations . 

We assume that  and  are identical in each case. 

The results obtained are summarized in Table -2 

Table-2: Robustness of the placement of the poles with respect to the parameters of the electric motor 

 
    

 

 

1 - - 1 0 
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- 0.088 - 1 66.69 

 

- - 1 0.82 63.09 

   et  0.05 0.076 - 1 65.93 

et  0.05 - 0.99 1 62.95 

et  - 0.0846 0.042 1 66.69 

,  et   0.05 0.064 0.12 1 65.17 

Conclusion: Table-2 gives the complete results of the effect of the uncertainties on the parameters ,  and of the 

analytical model of maneuver of a ship with direct current. Our study reveals that the looped system has a different 

sensitivity depending on the type and number of parameters affected. 

 

6. CONCLUSIONS 

We presented the analysis of the robustness of the system of the analytical model of a ship, the analytical model of 

maneuver of a boat, when the corrector is obtained by synthesis  

To use the μ-analysis of looped systems in which a corrector has been calculated for a nominal model, we isolate the 

uncertainties of the model in a structure block  and we group the rest in a transfer matrix M. We then calculate the 

singular value curve  as a function of frequency. 
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