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ABSTRACT 
 

Underwater vehicles are among the most important tools for exploring the seas and oceans. Examples have shown 

that ROVs and AUVs are used in many fields, be it military, economic, environmental or academic research. The 

motion equations are represented using Fossen's Robotic vector model. The main goal of obtaining a hydrodynamic 

model is to be able to simulate the movements of the ROV and to exploit the knowledge of ROV dynamics in the 

design of observers, controllers and propeller allocation. The equations of motion for an ROV are presented from 

two models. A model plant model, which is a detailed mathematical model of ROV dynamics, and a model control 

plant model, which is a simplified model. 
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1. INTRODUCTION  
The mathematical models of ROV and hydrodynamics are given in this paper. Notations and motion 

equations are represented using Fossen's Robotic vector model. This is an efficient way to describe differential 

equations in 6 degrees of freedom with coupling effects in matrix form. A section describing the sensors and their 

measurement equations are also included. 

This article is mainly based on [1] where the theory has been adapted to fulfill the purpose of the ROV. The 

sensor section is derived as part of the article, although the matrix notation is adopted from [1]. 

The main goal of obtaining a hydrodynamic model is to be able to simulate the movements of the ROV and to 

exploit the knowledge of ROV dynamics in the design of observers, controllers and propeller allocation. 

 

2. KINEMATICS 
The most important basic tool for understanding the ROV mathematical model is provided in this section. A 

method for writing matrix-based motion equations is presented and the frames used in this paper are explained. 

Transformations are also described. 

2.1 Robotic vector model of Fossen 

The motion equations developed for the ROV are written in a vectorial reference adopted from [2]. An 

example of using coordinates and generalized matrices to describe the 6 differential equations of motion of DOF is 

observed in (1) and (2). 
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 �̇� = 𝐽(𝜂)𝜈,   (1) 

 𝑀�̇� + 𝐶(𝜈)𝜈 + 𝐷(𝜈)𝜈 + 𝑔(𝜂) = 𝜏 (2) 

 

Where 𝐽∈ℝ6×6 is the rotation matrix of the reference associated with the vehicle at the reference mark. 

𝑀∈ℝ6×6 is the mass matrix, 𝐶∈ℝ6×6 is the matrix of Coriolis and centripetal forces and 𝐷∈ℝ6×6 is the 

damping matrix. 𝑔∈ℝ6×1) is a vector with restoring forces. Equation (1.9) is Newton's second law expressed in a 

mobile coordinate framework, hence the need to compensate for Coriolis and centripetal forces. 

2.2 References and frames used   

Modeling requires the step of defining reference points in relation to which we will describe the evolution 

of the machine. 

• ECI, {i}: Earth-centered inertial fix with axes {i} = [xi, yi, zi],  

• ECEF, {e}: Earth-centered and fixed landmark with axes {e} = [xe, ye, ze], 

• NED, {n}: North, East, Bottom with axes {n} = [xn, yn, zn],  

 

Where the frame {i} is supposed to be an inertial reference when precision is required. For even greater 

accuracy, an inertial fixture centered on the sun could be used, but this is not usually necessary. For vehicles that 

move slowly with a restricted movement zone, the {n} frame can be assumed to be inertial for most applications. 

The frame {e} is useful for describing motion over longer distances where the Fl to Earth approximation of {n} is 

inaccurate. For example, the GPS coordinates are given in the frame {e}, but it is impossible to display the attitude 

in this image because the bearing and the step of zero usually mean the level. The measurement frame is also a 

moving frame, generally moving and rotating with the frame associated with the body. Vector measurements, from a 

vehicle-mounted instrument, are in the instrument's measurement frame and move with the body frame. 

Other notations for the measurement frame are used when, for example, more than one instrument with vector 

measurements is mounted on a vehicle. 

 

Fig -1 : references and frames 

The reference associated with the body of a ROV is in Fig -1. The {b} axes define the surge, sway and heave 

directions and the rotation directions according to the right-hand rule. 
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3. EQUATIONS OF MOTION 

The equations of motion for a ROV are presented in the following. A process plant model, which is a detailed 

mathematical model of ROV dynamics, and control plant model, which is a simplified model [86]. The process plant 

model is used in the simulations, and the control plant model is used in the design of the controller and the observer. 

The equations are expressed in the center of origin (CO), which can be placed anywhere but most convenient on the 

center line or at the intersections of symmetry planes. The vector of CO at the center of gravity (CG) est 𝑟𝑔
𝑏 =

[𝑥𝑔𝑦𝑔𝑧𝑔] 𝑇 

 

3.1 Process Plant Model 

The Process Plant Model given in (3) and (4) is the Newton-Euler equation of motion around CO. This 

model is based on the Fossen robotic model described in [2]. 

Newtonian mechanics is expressed in the structure of the body and transformed into a NED frame. The model 

contains rigid body dynamics terms, hydrodynamic terms, a hydrostatic term, a propulsive force, and external 

forces. 

 �̇� = 𝐽(𝜂)𝜈,       (3) 

 𝑀𝑅𝐵�̇� + 𝐶𝑅𝐵(𝜈)𝜈 + 𝑀𝐴�̇�𝑟 + 𝐶𝐴(𝜈𝑟)𝜈𝑟 + 𝐷(𝜈𝑟)𝜈𝑟 + 𝑔(𝜂) = 𝜏 + 𝜏𝑒𝑥𝑡  (4) 

 

Where 𝑀𝑅𝐵∈ℝ6×6 is the mass matrix of the rigid body in CO and 𝐶𝑅𝐵(𝜈)∈ℝ6×6 is the coriolis matrix 

with rigid and centripetal body. 𝑀𝐴∈ℝ6×6 is the added mass matrix in CO, 𝐶𝐴(𝜈𝑟)∈ℝ6×6 is the added mass 

matrix and the centripetal matrix and 𝐷(𝜈𝑟)∈ℝ6×6 is the damping matrix. 𝑔(𝜂)∈ℝ6×1 is the hydrostatic 

restoring force vector, τ ∈ℝ6×6 is the vector of the propulsive force and 𝜏𝑒𝑥𝑡∈ℝ6×1 is a vector of external forces, 

including umbilical and manipulative forces. Each of the terms and matrices is explained in more detail in the 

following. 

𝜈𝑟∈ℝ6×1 is the relative speed vector with respect to water and is calculated as 

 𝜈𝑟 = 𝜈 − 𝜈𝑐   (5) 

 𝜈𝑟 = 𝜈 − 𝜈𝑐   (6) 

Where 𝜈𝑐∈ℝ6×1 is the velocity vector of the ocean current decomposed in the landmark attached to the body. For 

the irrotational ocean currents 

 𝜈𝑐 = [𝑢𝑐𝑣𝑐𝑤𝑐 0 0 0]𝑇    (7) 

Where  𝑢𝑐 , 𝑣𝑐  and 𝑤𝑐 are the speed components of the ocean current. 

a. Rigid body dynamics 

The rigid body mass matrix in CG is 

 𝑀𝑅𝐵
𝐶𝐺 = [

𝑚𝐼3×3 03×3

03×3 𝐼𝑔
]   (8) 

Where m is the mass of the vehicle and 𝐼𝑔∈ℝ3×3 is the inertia matrix around CG given by 

 𝐼𝑔 = [

𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧

]   (9) 

Where  𝐼𝑥, 𝐼𝑦,𝐼𝑧are the moments of inertia around the axes {b}, and 𝐼𝑥𝑦 = 𝐼𝑦𝑥, 𝐼𝑥𝑧 = 𝐼𝑧𝑥 and 𝐼𝑦𝑧 = 𝐼𝑧𝑦 are the 

products of inertia. The inertia matrix 𝐼𝑔 is approximated as if the ROV is a uniformly distributed mass box. 
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Coriolis matrix with a rigid and centripetal body in CG is 

 𝐶𝑅𝐵
𝐶𝐺 = [

𝑚𝑆(𝜔𝑏 𝑛⁄
𝑏 ) 03×3

03×3 −𝑆(𝐼𝑔𝜔𝑏 𝑛⁄
𝑏 )

]   (10) 

And is calculated directly from the mass, the inertia matrix and the rotational speed vector. 

The transformation is performed using the matrix (12) 

 𝐻(𝑟𝑔
𝑏) = [

𝐼3×3 𝑆𝑇(𝑟𝑔
𝑏)

03×3 𝐼3×3

]   (11) 

To have 

 𝑀𝑅𝐵 = 𝐻𝑇(𝑟𝑔
𝑏)𝑀𝑅𝐵

𝐶𝐺𝐻(𝑟𝑔
𝑏)   (12) 

 𝐶𝑅𝐵 = 𝐻𝑇(𝑟𝑔
𝑏)𝐶𝑅𝐵

𝐶𝐺𝐻(𝑟𝑔
𝑏)   (13) 

Which are respectively the mass matrix and Coriolis in CO. 

b. Hydrodynamic 

Mass added : 

The added mass of a body (vehicle) in a fluid is given by the added mass matrix 𝑀𝐴 with components such 

as 

 𝑀𝐴 =

[
 
 
 
 
 
 
𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇̇� 𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� ]
 
 
 
 
 
 

   (14) 

Where the hydrodynamic derivative 𝑋�̇� is for example the coefficient of the added mass force due to the 

acceleration in the yaw. Note that 𝑀𝐴 is symmetric,  𝑀𝐴 = 𝑀𝐴
𝑇

. When a body moves or oscillates in the water, 

part of the surrounding body of water also moves. This means that there is a pressure field in the water around the 

body. This pressure, not to mention the hydrostatic pressure, can be integrated on the surface of the body to find 

added mass forces. Thus, the added mass is not a specific quantity of water that moves with the body, but it must be 

understood in terms of hydrodynamic pressure. 

The pressure field in the water, set up by the movements of the body, depends on the boundary conditions 

of the surrounding water, such as the free surface and the bottom of the sea. The movements of a body in or near 

surface will produce waves, and the pressure field will depend on the frequency. For submarine vehicles, it is 

assumed that no wave is generated and that the added mass is constant. 

An underwater vehicle has a restoring force only in roll and pitch, so there are no clean frequencies for 

other DOFs. The constant added mass is calculated as zero frequency added mass for overvoltage, sway, lift and 

yaw. For roll and height, the added mass corresponding to the natural frequency is used. The natural frequencies of 

roll and height are calculated by 

 𝑤𝑟𝑜𝑙𝑙 = √
𝐶44

𝐼𝑥+𝐾�̇�(𝑤𝑟𝑜𝑙𝑙)
, 𝑤𝑝𝑖𝑡𝑐ℎ = √

𝐶55

𝐼𝑥+𝐾�̇�(𝑤𝑟𝑜𝑙𝑙)
   (15) 

 

Where 𝐶44 and 𝐶55 are the hydrostatic booster forces to be defined later. We note that it is a recursive 

equation. 



Vol-5 Issue-1 2019        IJARIIE-ISSN(O)-2395-4396 
 

9466 www.ijariie.com 552 

It can be difficult to find the 36 terms, including the diagonal cross-coupling terms. As 𝑀𝐴 is symmetrical, it is 

enough to find the 6 diagonal elements and the 15 elements above the diagonal. This can be further reduced by 

exploiting the symmetry properties of the vehicle itself. For simplicity, the ROV is supposed to have a symmetry 

around the 𝑥𝑧, 𝑦𝑧 and 𝑥𝑦 planes (port / starboard, forward / backward, down / up). Thus, there are no mass terms 

added by cross-coupling and the added mass matrix is reduced to 

 

 

𝑀𝐴 = −𝑑𝑖𝑎𝑔{𝑋�̇�(0), 𝑌�̇�(0), 𝑍�̇�(0), 𝐾�̇�(𝑤𝑟𝑜𝑙𝑙),𝑀�̇�(𝑤𝑝𝑖𝑡𝑐ℎ),𝑁�̇�(0)}  

  

(16) 

Where the values of each element are calculated from the hydrodynamic tables. Alternatively, the 36-

element mass matrix may be calculated by a computer program such as WADAM or WAMIT if CAD drawings are 

available. This was done for ROV 30k in [3]. 

Coriolis and centripetal forces : 

The hydrodynamic and centripetal Coriolis matrix  𝐶𝐴, for a rigid body moving through an ideal fluid, can 

always be parameterized to be asymmetric 

 𝐶𝐴(𝜈) = −𝐶𝐴
𝑇(𝜈), ∀ 𝜈 ∈ ℝ6×1   (17) 

𝐶𝐴 is calculated from the added mass matrix and the generalized velocity vector. The parametrization of 𝐶𝐴 used for 

the ROV is given in (18) as suggested by [2]. 

 𝐶𝐴(𝜈) = [
03×3 −𝑆(𝐴11𝑣 + 𝐴12𝑤)

−𝑆(𝐴11𝑣 + 𝐴12𝑤) −𝑆(𝐴21𝑣 + 𝐴22𝑤)
]   (18) 

 

Where 𝐴𝑖𝑗∈ℝ3×3 is given by 

 𝑀𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
]   (19) 

Damping : 

For underwater vehicles, such as ROV, potential damping and other wave damping effects are neglected. 

The damping of an ROV is mainly caused by vortex excretion and skin friction. The easiest way to determine the 

damping properties of an ROV is to approximate its box geometry and use coefficients from hydrodynamic tables. 

However, the box approximation will underestimate the damping forces since the ROV has many cavities, exposed 

cables, manipulators, and other accessories such as lights and instruments. It is difficult to calculate the damping of 

each of these appendages and to evaluate the effects of the flux interactions in the ROV frame caused by the motion 

and thrust of the thrusters. For simplicity, depreciation is approximated by a linear and quadratic term given by 

 𝐷(𝜈𝑟) = 𝐷 + 𝐷𝑛(𝜈𝑟)   (20) 

Where 𝐷 is the linear damping matrix due to the friction of the wall and 𝐷𝑛(𝜈𝑟)  is the quadratic damping, 

mainly caused by the formation of vortices. The damping matrix 𝐷(𝜈𝑟)  is strictly positive because the energy is 

dissipated by damping. 

An alternative damping model, particularly suitable for low speeds, is given by 

 𝐷(𝜈𝑟) = 𝐷𝑒−𝛼‖𝜈𝑟‖ + 𝐷𝑛(𝜈𝑟)   (21) 

Where 𝛼 is a tuning parameter for linear damping decreasing exponentially with vehicle speed, ‖𝜈𝑟‖. 

Diagonal damping matrices are used in ROV modeling because of the difficulty of finding values for non-

diagonal damping terms, from calculations or experiments, and because diagonal terms are dominant. The linear and 

nonlinear damping matrices are given by 
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 𝐷𝐷 = −𝑑𝑖𝑎𝑔{𝑋𝑢, 𝑌𝑣, 𝑍𝑤, 𝐾𝑝, 𝑀𝑞 , 𝑁𝑟},    (22) 

 𝐷𝑛(𝜈𝑟) = −𝑑𝑖𝑎𝑔{𝑋|𝑢|𝑢|𝑢𝑟|, 𝑌|𝑣|𝑣|𝑣𝑟|, 𝑍|𝑤|𝑤|𝑤𝑟|, 𝐾|𝑝|𝑝|𝑝𝑟|,𝑀|𝑞|𝑞|𝑞𝑟|, 𝑁|𝑟|𝑟|𝑟𝑟|} (23) 

 

Where the elements of 𝐷 and 𝐷𝑛(𝜈𝑟) are determined from experiments. The damping coefficients can 

also be analytically approximated. 

Hydrostatic forces : 

The gravitational and buoyancy forces, as well as the corresponding restoring moments are calculated in 

CG by 

 𝑔𝐶𝐺(𝜂) =

[
 
 
 
 
 

(𝑊 − 𝐵) sin 𝜃
−(𝑊 − 𝐵) cos 𝜃 sin 𝜙

−(𝑊 − 𝐵) cos 𝜃 cos𝜙
𝑦𝑏𝐵 cos 𝜃 cos𝜙 − 𝑧𝑏𝐵 cos 𝜃 sin 𝜙

−𝑧𝑏𝐵 sin 𝜃 − 𝑥𝑏𝐵 cos 𝜃 cos𝜙
𝑥𝑏𝐵 cos 𝜃 sin𝜙 + 𝑦𝑏𝐵 sin 𝜃 ]

 
 
 
 
 

   (24) 

Where 𝑊 is the weight of the vehicle and 𝐵 the buoyancy, calculated by 

 𝑊 = 𝑚𝑔, 𝐵 = 𝜌𝑔∇   (25) 

Where 𝜌 is the density of the water, 𝑔 is the acceleration of the gravity and ∇ is the total volume (displacement) of 

the ROV. The CG vector at the center of buoyancy (CB) is 

𝑟𝐶𝐵 = [𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏  ]
𝑇 

𝑔𝐶𝐺(𝜂) is converted to CO by 

 𝑔(𝜂) = 𝐻𝑇𝑟𝑔
𝑏𝑔𝐶𝐺(𝜂)   (26) 

Note that for most ROVs, CB is directly above CG, that is, 𝑟𝐶𝐵 = [0  0  𝑧𝑏]
𝑇 . Thus, the linearized coil 

coefficients for roll and pitch are  𝐶44 = 𝐶55 = 𝑧𝑏, which is used in the calculation of eigenfrequencies for roll 

and pitch. 

 𝑀�̇�𝑟 + 𝐶(𝜈𝑟)𝜈𝑟 + 𝐷(𝜈𝑟)𝜈𝑟 + 𝑔(𝜂) = 𝜏 + 𝜏𝑒𝑥𝑡   (27) 

If the current of the ocean is irrotational, the Coriolis and centripetal matrix is parametrized independently of the 

linear velocity [2], 𝜈𝑐 = [𝑢𝑐𝑣𝑐𝑤𝑐 0  0  0]𝑇 . The matrices of effective mass, 𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴 and of Coriolis 

and centripetal, 𝐶(𝜈𝑟) = 𝐶𝑅𝐵(𝜈𝑟) + 𝐶𝐴(𝜈𝑟), are the sum of the respective rigid and hydrodynamic matrices. 

3.2 Control Plant Model 

The Control Plant Model, given by (28), (29) and (30), is used for the analysis and design of observers and 

controllers. This is a simplified version of the Process Plant Model. We suppose that 

 Vehicle speeds are low, <1 m / s. Thus, centripetal Coriolis forces and nonlinear damping are neglected 

 The ocean current velocities are constant or vary slowly. Thus, equations are given in terms of vehicle 

velocity, ν, and additional forces from ocean currents are included in the bias estimate, b. 

 Roll and pitch motions are low, <10 degrees, and the ROV has neutral buoyancy with CB directly above 

CG. Thus, the restoring forces are linearized using G. Control Plant Model is a simplified model, it still 

reflects the main dynamics of the ROV. 
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 �̇� = 𝐽(𝜂)𝜈,   (28) 

 𝑀�̇� + 𝐷𝜈 + 𝐺𝜂 = 𝜏 + 𝐽𝑇(𝜂)𝑏,    (29) 

 �̇� = −𝑇𝑏
−1𝑏 + 𝑤𝑏   (30) 

Where D ∈ℝ6×6 is the linear damping matrix. 𝑏∈ℝ6×1 is the bias that accounts for unmodeled dynamics and 

slowly varying loads, which is modeled as an order Markov process 1. 𝑇𝑏 ∈  ℝ6×6 is a diagonal matrix with 

positive polarization time constants. 𝑤𝑏 ∈  ℝ6×1 is a moderately neutral neutral Gaussian noise process [87]. G is 

a linearized restoration matrix given by 

 𝐺𝐶𝐺 = 𝑑𝑖𝑎𝑔{0, 0, 0, −𝑧𝑏𝐵,−𝑧𝑏𝐵, 0}   (31) 

 𝐺 =  𝐻𝑇𝑟𝑔
𝑏𝐺𝐶𝐺𝐻(𝑟𝑔

𝑏)   (32) 

Bias estimation takes into account slowly varying forces, such as ocean currents, and errors in modeling. 

 

 

4. GENERALIZED FORCES 

4.1 Ocean Current Forces 

Ocean current forces are included in the Process Plant Model through the velocity of the ocean current in 

the body. In simulations, this is generated using a model of the speed and direction of the ocean current in the 

geographic reference, e.g. the NED frame. 

The velocity of the ocean current is 𝑉𝑐 and it has a vertical direction and horizontal 𝛼𝑐 and 𝛽𝑐 in the reference {n}. 

The velocity vector of the ocean current in {n} is 

 𝑣𝑐
𝑛 = 𝑅𝑦,𝛼𝑐

𝑇 𝑅𝑧,−𝛽𝑐

𝑇 [
𝑉𝑐

0
0
]   (33) 

Where the rotation matrices are found from (1.16bis) with 𝛼𝑐 and −𝛽𝑐 as arguments. 

The dynamics for 𝑉𝑐, 𝛼𝑐 and 𝛽𝑐 can be added to obtain a slowly varying ocean current. A model suggested in [2] is 

to use a first order Gauss-Markov process given by 

 �̇�𝑐 + 𝜇𝑉𝑐 = 𝑤,   (34) 

 �̇�𝑐 + 𝜇𝛼𝛼𝑐 = 𝑤𝛼,   (35) 

 �̇�𝑐 + 𝜇𝛽𝛽𝑐 = 𝑤𝛽,   (36) 

Où 𝜇𝑖 ≥ 0 est une constante et 𝑤𝛼  est un bruit blanc gaussien. 

Where 𝜇𝑖 ≥ 0  is a constant and 𝑤𝛼  is a white Gaussian noise. 

The ocean current is transformed into a body before use in the Process Plant Model as 

 𝜈𝑐 = 𝐽𝑇(𝜂)𝜈𝑐
𝑛   (37) 

Where the elements of 𝜈𝑐 are given by (4). 

4.2 Propulsive forces 

The forces produced by each thruster constitute the total control force. However, the actual thrust is not 

easy to measure and must be estimated from a propeller model. Propeller dynamics are complex and errors in the 

propeller model affect the performance of the higher level control because it is uncertain if the desired thrust vector τ 
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is produced. Thus, the actual control input is the speed of rotation of the thrusters, and a mapping connecting the 

speed of rotation to the thrust is necessary. 

 

A basic model of the thrust production of a single propeller is given by (38) as 

 𝑓 = 𝐾𝑇(𝐽)𝜌𝐷4𝑛2   (38) 

Where f is the thrust, 𝐾𝑇(𝐽)  is the thrust coefficient, 𝜌 is the density of the water, D is the diameter of the 

helix and n is the rotational speed of the helix in revolutions per second (r / s). 

 

The thrust coefficient depends on the number of advances 𝐽 that is given by 

 𝐽 =
𝑉𝑎

𝑛𝐷
   (39) 

Where 𝑉𝑎 is the speed of the flow water of the propeller. The thrust coefficient can be given in a quadrant 

diagram to show the performance of the thruster under all operating conditions [4]. An open water test was 

conducted in 2005 in the Marintek Cavitation Tunnel, Trondheim by Martin Ludvigsen for a propellant used on the 

Minerva ROV. The results were reported in [5] and the polynomials of (40) and (41) were found from curve-fitting 

experimental data for the first and third quadrants, respectively 

 𝐾𝑇(𝐽)1 = 0.5𝐽3 − 0.66𝐽2 − 0.25𝐽 + 0.24   (40) 

 𝐾𝑇(𝐽)3 = 0.025𝐽3 − 0.28𝐽2 − 0.17𝐽 − 0.15   (41) 

For any ocean current, the 1st quadrant is the forward thrust, and the third quadrant is the reverse thrust 

while advancing. The second quadrant is the forward pushback and the 4th quadrant is reversed backward.  

 

 

5. SENSORS 

Underwater navigation is one of the main challenges in the development of a motion control system 

because no global positioning system (GPS) is available below the surface. The need for an observer who functions 

during manipulative work and other cases with variable and uncertain disturbances and dynamics, inspired research 

on sensor-based state estimation. Specifically, a new type of attitude estimator known as the explicit supplementary 

filter has been adopted and modified for the use of ROV. This attitude estimator is also used in an integration filter 

to estimate translation positions. The main contribution here is a new method for including velocity measurements 

from a Doppler velocity register (DVL) or velocity estimates, to approximate the correct acceleration of the vehicle. 

This makes it possible to improve the attitude estimation for the accelerated vehicles, and therefore the estimated 

positions when they are used in cascade with an integration filter. 

  The orientation of the ROV is necessary to perform automatic tasks such as trajectory tracking and terrain 

monitoring. Guiding modes require different levels of operator interaction. 

5.1 Description  

There are four common ROV sensors in Fig -2. It is a transponder, which is mounted on the vehicle in a 

part of the Acoustic Positioning System (APS), a DVL, an Inertial Measurement Unit (IMU) and a pressure gauge.  
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Fig -2 : Sensors of a ROV 

5.2 Measurement systems 

The sensors are placed and aligned in different positions on the ROV. Thus, all measures must be 

transformed into CO or another origin of common interest in order to provide additional information. The equations 

describing these translations and transformations are given below. Measurement equations are also used to simulate 

sensor measurements in computer simulations. 

a. IMU 

The measurement equations for IMU are given by (42), (43) and (44) for accelerometers, gyroscopes and 

magnetometers, respectively. These equations are given in terms of states in the IMU frame. 

 
𝛼𝑖𝑚𝑢

𝑚 = �̇�𝑚 𝑒⁄
𝑚 + 𝑤𝑚 𝑖⁄

𝑚 × 𝑣𝑚 𝑒⁄
𝑚 + 𝑅𝑛

𝑚(𝑤𝑒 𝑖⁄
𝑛 + 𝑤𝑛 𝑒⁄

𝑛 ) × 𝑣𝑚 𝑒⁄
𝑚 − 𝑅𝑛

𝑚𝑔𝑙
𝑛 + 𝑏𝑎𝑐𝑐

𝑚 +

𝑤𝑎𝑐𝑐
𝑚  ,  

(42) 

 𝛼𝑖𝑚𝑢
𝑚 = 𝛼𝑚 𝑛⁄

𝑚 + 𝑅𝑛
𝑚(𝑤𝑒 𝑖⁄

𝑛 + 𝑤𝑛 𝑒⁄
𝑛 ) + 𝑏𝑔𝑦𝑟𝑜

𝑚 + 𝑤𝑔𝑦𝑟𝑜
𝑚 ,   (43) 

 𝑚𝑖𝑚𝑢
𝑚 = 𝑅𝑛

𝑚𝑅𝑒
𝑛𝑚𝑒 + 𝑏𝑚𝑎𝑔

𝑚 + 𝑤𝑚𝑎𝑔
𝑚 ,    (44) 

 

Where 𝛼𝑖𝑚𝑢
𝑚 ∈ ℝ3 is the acceleration vector measured in {m}. 𝑏𝑎𝑐𝑐

𝑚  is the polarization vector of the 

accelerometer, and 𝑤𝑎𝑐𝑐
𝑚  is the noise vector of the accelerometer. 

b. DVL 

The measurement equations for the DVL are given by (45) 

 𝑣𝑑 𝑒⁄
𝑑 = 𝑅𝑏

𝑑(Θ𝑏𝑑)(𝑣𝑏 𝑛⁄
𝑏 + 𝑤𝑏 𝑛⁄

𝑏 × 𝑟𝑑𝑣𝑙 𝑏⁄
𝑏 ) + 𝑤𝑑𝑣𝑙

𝑑
   (45) 

𝑣𝑑 𝑒⁄
𝑑 ∈ ℝ3 is the speed measured in {d}, and 𝑤𝑑𝑣𝑙

𝑑
 is the noise emitted by the DVL. The equation. (1.83) is used 

as is for sensor simulation and must be solved for 𝑣𝑏 𝑛⁄
𝑏  for use in the control system 

c. Transponder 

The measurement equation for the transponder is given by (46) 

 𝑝𝑡𝑝 𝑛⁄
𝑛 = 𝑝𝑏 𝑛⁄

𝑛 + 𝑅𝑏
𝑛(Θ𝑛𝑏)𝑟𝑡𝑝 𝑏⁄

𝑏 + 𝑤𝑡𝑝
𝑛

   (46) 

Where 𝑝𝑡𝑝 𝑛⁄
𝑛 ∈ ℝ3 is the transponder position measured in {n}, 𝑝𝑏 𝑛⁄

𝑛
 is the position of the ROVet 𝑤𝑡𝑝

𝑛
 is the 

APS noise. Equation (1.84) is used as is for sensor simulation and must be solved for 𝑝𝑏 𝑛⁄
𝑛

 for use in the control 

system. 

d. Pressure gauge 

The measurement equations for the manometer are given by (47) and (48). 
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 𝑝𝑝𝑔 = 𝑝𝑎𝑡𝑚 + 𝜌𝑔𝑧𝑝𝑔 𝑛⁄
𝑛 + 𝑤𝑝𝑔,   (47) 

 𝑧𝑝𝑔 𝑛⁄
𝑛 = 𝑧𝑏 𝑛⁄

𝑛 + [0  0  1]𝑅𝑏
𝑛(Θ𝑛𝑏)𝑟𝑝𝑔 𝑏⁄

𝑏
 (48) 

Where 𝑝𝑝𝑔 is the measured pressure, 𝑝𝑎𝑡𝑚 is the atmospheric pressure at the surface, 𝜌 is the density of water, 𝑔 is 

the acceleration of gravity, 𝑧𝑝𝑔 𝑛⁄
𝑛

 is the depth of the pressure gauge and 𝑤𝑝𝑔 is the sound of the pressure gauge. 

𝑧𝑝𝑔 𝑛⁄
𝑛

 is the depth of the ROV. Equation (47) is only valid for a constant water density in the whole water. For real 

implementations, finer measurement equations to convert the pressure to depth should be used, eg. the depth 

conversion formula in [6]. Equation (48) is used as is for sensor simulation and must be solved for 𝑧𝑏 𝑛⁄
𝑛

n for use in 

the control system. 

 

 

6. CONCLUSION 

This paper allowed us to study the different kinematic models, notably the Fossen Robotic model and the 

different transformations associated with each of the reference points used. The models for the equations of motion 

are given by the "Process Plant Model" and the "Control Plant Model". The generalized forces acting on the ROV 

come mainly from the ocean current, the umbilical, the manipulator and the thrusters. The most important sensors 

used for navigation of the ROV are also described in this first article.  

Thus, a method to include velocity measurements from a Doppler velocity register or velocity estimates, to 

approximate the correct acceleration of the vehicle, has been investigated. 
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