

SCIENTIFIC APPROACH ON ANALYSIS OF FABRIC DEFECTS AND IMPROVISATION OF WORKING EFFICIENCY

Author¹, S.Sundaresan¹, S.Ariharasudhan², R .Arun ³,A.Charankumar⁴

^{1,2}:Associate Professor, ²: Assistant Professor-III, ^{3,4}: Final year B.Tech-Textile Technology
Kumaraguru College of Technology, Saravanampatti, Coimbatore-49

ABSTRACT

This industry-focused project conducts a comprehensive study of fabric defects arising during dyeing and finishing operations, aiming to evaluate their impact on production efficiency, fabric quality, and garment performance. The research follows a systematic inspection procedure where both knitted and woven fabrics are thoroughly examined to detect, classify, and measure various defects such as yarn pulling, slub yarn, needle lines, dye patches, colour variations, misprints, oil stains, handling marks, finishing defects, and other process-related irregularities. Each defect is carefully mapped, documented, and photographed when necessary. A frequency-based defect-point system is applied, assigning one point for every five repeated occurrences. This method allows for objective identification and prioritization of recurring problems rather than focusing solely on defect size or visual appearance. Using the collected defect data, the study performs an in-depth root cause analysis to trace issues back to possible sources, including raw material inconsistencies, incorrect machine settings, equipment wear, unstable processing parameters, operator errors, chemical variations, or environmental factors. Based on these findings, targeted corrective measures are proposed, such as optimizing dyeing temperature and pressure, adjusting machine speed and tension, refining finishing processes, improving inspection protocols, and strengthening operator training. In addition, preventive strategies are recommended, including stricter supplier quality control, enhanced raw material testing, routine machine maintenance, and real-time monitoring of key process parameters to reduce defect recurrence. The research demonstrates that even minor, repeated defects significantly lower fabric utilization during cutting, increase waste and rework, delay production timelines, and negatively affect customer satisfaction and brand image. Overall, the project establishes a strong relationship between defect frequency, operational inefficiencies, and production losses. It highlights the importance of data-driven quality management within industry and provides practical recommendations, performance indicators, and long-term monitoring systems aimed at reducing fabric rejection rates, improving process consistency, increasing throughput, and enhancing overall product quality in dyeing and finishing operations.

Keyword : - *Fabric Defects, Dyeing and Finishing, Root Cause Analysis, Quality Management, Production Efficiency, Process Optimization*

1. INTRODUCTION

Fabrics delivered to the factory exhibit a range of defects in both knitted and woven forms. These imperfections reduce fabric utilization and contribute to increased wastage during garment manufacturing. The occurrence of defects leads to additional rework, production delays, and higher manufacturing costs. In the absence of a structured root cause analysis, implementing effective corrective actions becomes challenging. Therefore, a systematic approach to identifying and classifying defects is essential for accurately tracing their source. By determining the underlying causes, fabric quality can be improved, rejection rates can be reduced, and overall productivity can be enhanced. The textile and apparel industry is among the most competitive manufacturing sectors worldwide, where product excellence, stable processes, and operational efficiency are key determinants of success. Within this industry, the dyeing and finishing departments hold significant importance, as they directly affect fabric colour consistency, texture, appearance, and overall performance before garment production. Even small defects generated during these stages can result in fabric rejection, material wastage, buyer dissatisfaction, additional reprocessing costs, and inefficiencies in later processes such as cutting and stitching. In high-volume production settings with

strict buyer requirements, effective defect control is essential to maintain quality standards and customer trust. Fabric defects may arise from various sources, including inconsistencies in raw materials (such as yarn faults or contamination), machine-related problems (incorrect settings, damaged needles, uneven pressure), chemical imbalances, and operator handling errors. When such defects are overlooked or frequently repeated, they disturb workflow, reduce fabric utilization, and increase overall production expenses. Therefore, adopting a structured and analytical method for detecting, documenting, and analyzing defects is crucial. This project addresses these industrial challenges by closely examining defect patterns occurring during dyeing and finishing processes, thereby connecting theoretical knowledge with real-world manufacturing practices. The primary objective is to conduct a detailed investigation of fabric defects through on-site inspections, systematic data collection, defect classification, and evaluation of their influence on fabric quality and production efficiency. Both knitted and woven fabrics are assessed, and common defects—such as yarn pulling, slub yarn, needle lines, dye patches, shade variations, misprints, oil stains, crease marks, and handling marks—are carefully documented. Each defect is recorded based on its frequency, size, location, and probable stage of origin. This data-oriented approach allows for a clearer understanding of how specific defects contribute to wastage, rework, production delays, and customer complaints. Beyond identification, the study also examines operational factors responsible for defect formation, including raw material quality, machinery condition, operator performance, chemical preparation accuracy, and environmental conditions. By analysing these aspects collectively, the project identifies root causes of recurring defects and highlights areas requiring process improvement. Furthermore, this introduction lays the groundwork for subsequent sections that outline corrective and preventive measures, performance indicators, inspection methods, and practical recommendations aimed at strengthening fabric quality standards. Overall, the project supports the development of a more efficient, sustainable, and quality-driven dyeing and finishing operation.

2. LITERATURE REVIEW

Fabric quality plays a vital role in ensuring productivity, cost control, and customer satisfaction in textile manufacturing. Research consistently shows that defects in both knitted and woven fabrics lead to higher rejection rates, increased rework, and greater material wastage during garment production. Defects arising at any stage—spinning, knitting or weaving, dyeing, or finishing—can reduce fabric utilization and negatively affect downstream operations. For this reason, systematic defect detection, classification, and root cause analysis are essential to maintaining consistent quality standards. Fabric defects are defined as deviations from specified quality requirements. They may originate during raw material preparation, yarn production, fabric formation, dyeing, printing, or finishing processes. Studies highlight that such defects contribute to wastage, reduced efficiency, production delays, and increased garment manufacturing costs. This supports the project's identified problem: recurring fabric defects diminish efficiency and lead to additional rework. Scholars such as Smith et al. (2020) identify fabric defects as a major quality challenge, emphasizing the importance of structured inspection and quantification methods for sustainable improvement. Recurring defects also influence grading systems, where cumulative frequency impacts the overall defect score assigned to fabric lots. This chapter reviews existing research on fabric defects, their origins, classification systems, and analytical tools used for root cause investigation. Researchers commonly classify defects based on their process origin, structural characteristics, or visual appearance. Proper categorization such as separating knitted, woven, and dyeing/finishing defects—is crucial for accurately tracing their causes. Literature identifies common knitted fabric defects including loop distortion, needle lines, missed loops, slubs, and yarn pulling. Patel and Mehta (2019) explain that these issues often result from yarn irregularities, needle damage, improper loop formation, or tension variations. Examples include needle lines, yarn pulling, slub yarn, and oil stains. In woven fabrics, typical defects include mis picks, floats, broken ends, stains, weft contamination, and shade variation. Ghosh (2018) notes that such defects are mainly linked to loom settings, tension imbalance, improper shedding, and substandard yarn quality. The project similarly reports defects such as mis picks, handling stains, and dye patches. Dyeing and finishing processes significantly influence both the visual and functional properties of fabrics. Defects such as uneven dyeing, patchiness, crease marks, oil stains, and contamination are frequently observed at this stage. Rao (2021) attributes many dyeing defects to temperature fluctuations, inaccurate chemical dosing, and equipment malfunctions. Quality assurance research stresses the importance of systematic inspection to monitor and quantify defects. Two primary inspection approaches are widely practiced. The first is manual inspection, where trained personnel examine fabrics on inspection machines. Although labor-intensive, this method remains popular due to its practicality and cost-effectiveness. The project also relies on visual inspection to identify and map defects to specific dyeing and finishing processes. The second approach involves point-based grading systems. The globally recognized 4-Point System assigns scores based on defect size, frequency, and severity. The project adopts a simplified frequency-based system, where five occurrences of a defect equal one point. This aligns with industry practices that prioritize defect recurrence as a key indicator of quality loss.

For root cause analysis, the Fishbone (Ishikawa) diagram is widely used in textile quality management. Literature categorizes defect causes into five main groups: Man (operator errors and handling issues), Machine (equipment faults and tension variations), Material (yarn inconsistencies and dye incompatibility), Method (incorrect temperature, washing time, or chemical dosing), and Environment (humidity changes or contamination). Process mapping and data-driven analysis are also recommended to link defects with specific production stages such as knitting, dyeing, or finishing. Techniques include defect mapping during production and the use of inspection reports to identify patterns and recurring issues. Numerous studies confirm that fabric defects reduce usable fabric length, increase reprocessing time, raise production costs, lower productivity, and negatively impact customer satisfaction. The project findings reflect this widely documented issue, as recurring defects lead to delays, rework, and higher overall manufacturing costs. Preventive and corrective strategies highlighted in literature include regular machine maintenance, operator training, use of high-quality yarns and compatible dyes, strict monitoring of process parameters, and maintaining clean, controlled working environments. The project similarly aims to recommend corrective and preventive actions based on identified root causes. Overall, existing research strongly supports the need for systematic defect identification, proper classification of knit, woven, and dyeing/finishing defects, application of grading systems, use of root cause analysis tools such as the Fishbone diagram, and implementation of effective corrective and preventive quality measures related to your research work.

3. METHODOLOGY

The methodology for this study involves observing fabrics at the inspection stage, classifying defects into knit and woven categories, mapping defects during dyeing and finishing, and identifying root causes through inspection reports, with a specific focus on analysing yarn-related faults that significantly influence fabric quality.

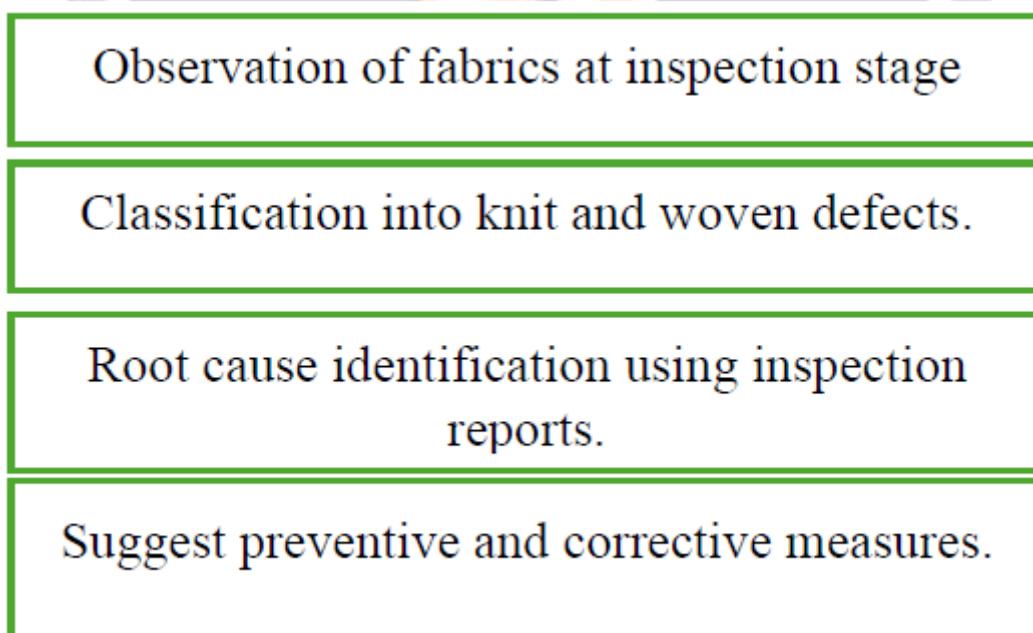
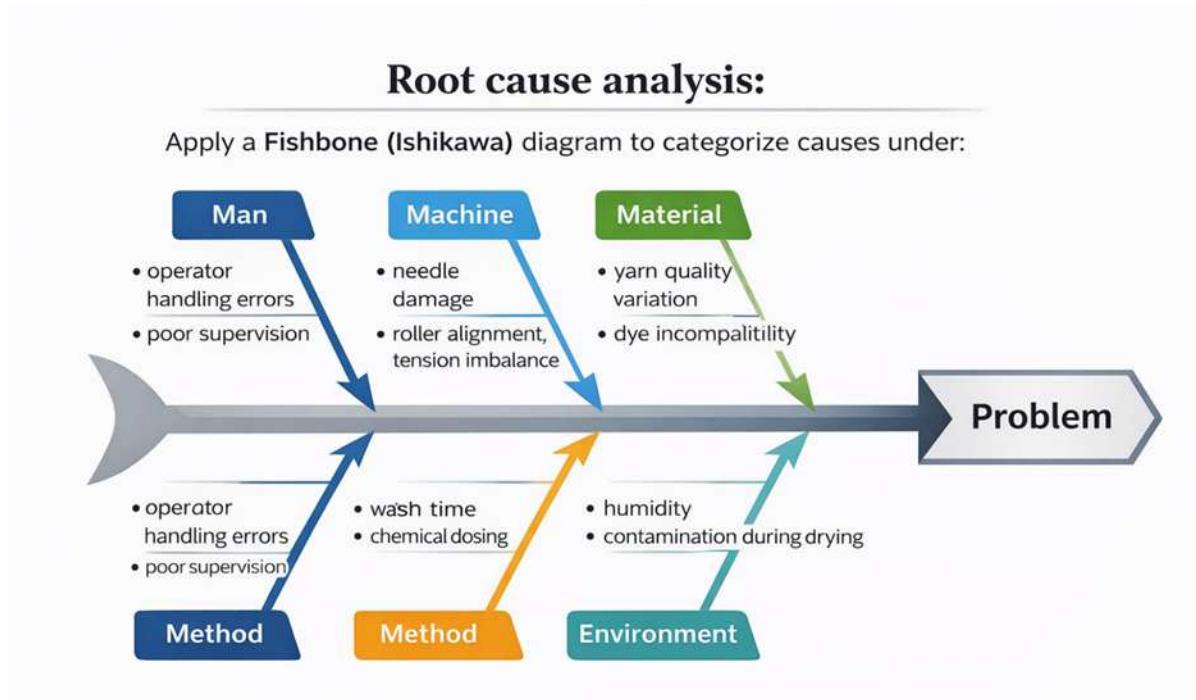
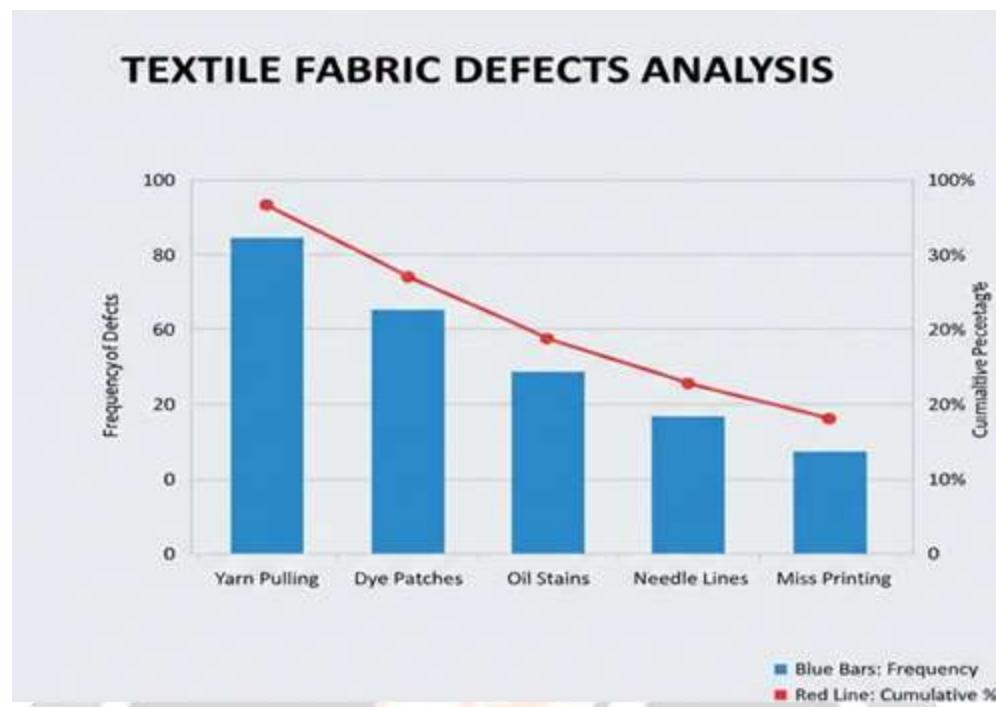


Chart -1-Methods adopted for the study




Fig -1 Root Cause analysis diagram

4. DEFECTS AND ANALYSIS

S.no	Defect	Cause	Preventive /Corrective measures
1.	Yarn pulling 	Excessive tension during winding, damaged guides, improper feeder settings, or rough machine surfaces	Maintain uniform yarn tension through regular calibration of feeders and tension devices. Inspect yarn path components (guides, eyelets, tensioners) and replace worn or rough parts. Ensure proper alignment of machine guides to avoid yarn snagging. Maintain steady machine speed to reduce sudden jerk loads.

S.no	Defect	Cause	Preventive /Corrective measures
2	Dye Patches 	Uneven dye penetration, inconsistent liquor ratios, poor fabric preparation, or chemical dispersion issues.	Standardize pre-treatment processes (desizing, scouring, bleaching) to ensure uniform absorbency. Maintain consistent dye bath parameters such as liquor ratio, pH, temperature, and agitation. Use proper chemical dosing systems for accurate and uniform mixing. Perform regular calibration of dyeing machines and pumps.
3.	Misprinting 	Improper screen alignment, pressure variation, faulty squeegee, or fabric movement during printing.	Calibrate and align printing screens before each production cycle. Standardize squeegee pressure, angle, and stroke speed. Ensure fabric is properly tensioned and free from wrinkles before printing. Regularly clean screens to avoid pigment blockage.
4	Needle Drop Line 	Broken/bent needles, improper needle timing, or dropped stitches in knitting.	Replace needles at recommended intervals; avoid using dull or damaged needles. Maintain correct timing between needle movement and yarn feed. Periodically clean trick plates and needle beds to avoid obstruction. Use high-quality lubricants to reduce friction and needle wear.

S.no	Defect	Cause	Preventive /Corrective measures
5	Handling Stain 	Improper manual handling, dirty surfaces, contamination during loading/unloading.	Enforce strict use of gloves, aprons, and hygiene protocols for operators. Keep worktables, trolleys, and machinery surfaces clean and dust-free. Implement material-handling SOPs to avoid dragging or placing fabric on dirty floors. Store fabrics in covered bins to reduce exposure to contaminants.
6.	Slub Yarn 	Variation in fiber supply, defective drafting system, roller eccentricity, or poor raw material quality.	Maintain proper settings in drafting zone (roller pressure, spacing, speed). Replace worn drafting rollers and check for eccentric or misaligned rollers. Ensure consistent fiber blending and carding to avoid thick/thin places. Use high-quality, well-prepared roving with uniform linear density.
7	Oil Stain 	Excess machine lubrication, oil leakage, dripping from overhead parts, or improper cleaning.	Implement preventive maintenance schedules to identify leaks early. Avoid over-lubrication; follow manufacturer recommendations for oil quantity. Install oil-absorbent pads or guards near critical machine areas. Clean delivery rollers and machine surfaces frequently.

Fig -2 Occurrence of defect

4. CONCLUSION

This industry project aims to develop a systematic and standardized approach for detecting, categorizing, and evaluating fabric defects across various fabric types. By introducing enhanced inspection methods and a frequency-based defect scoring system, the project seeks to gain deeper insight into recurring defect trends and their influence on fabric utilization. Structured data collection and organized classification will allow the company to track defect patterns more effectively, improve quality documentation, and make better-informed decisions in upcoming production cycles. In addition, the project intends to establish a practical root cause analysis model that connects commonly occurring defects with factors such as machine condition, raw material variation, process parameters, and handling practices. Drawing from these findings, recommended corrective and preventive measures including improved maintenance planning, stricter material verification, focused operator training, and tighter process control—are expected to minimize defect repetition and enhance fabric uniformity. Overall, these outcomes will strengthen quality management systems, increase production efficiency, reduce material waste, and ensure more consistent product performance over time.

5. REFERENCES

- [1].Smith, J. et al. (2020). Fabric Defect Analysis in Textiles. *Journal of Textile Engineering*. [\[https://doi.org/10.1016/j.jte.2020.01.005\]](https://doi.org/10.1016/j.jte.2020.01.005)
- [2]. Patel, R., & Mehta, K. (2019). Defects in Knitted Fabrics. *International Journal of Textile Science*. [\[https://doi.org/10.1080/knit.2019.03.002\]](https://doi.org/10.1080/knit.2019.03.002)
- [3].Ghosh, A. (2018). Woven Fabric Faults and Their Remedies. *Indian Textile Journal*. [\[https://doi.org/10.3126/itj.2018.02.003\]](https://doi.org/10.3126/itj.2018.02.003)
- [4]. Rao, P. (2021). Dyeing Defects and Quality Control. *Journal of Textile Processing*. [\[https://doi.org/10.1177/jtp.2021.06.004\]](https://doi.org/10.1177/jtp.2021.06.004)
- [5] Booth, J. E. *Principles of Textile Testing*. Butterworth-Heinemann, 1996.
- [6]. Saville, B. P. *Physical Testing of Textiles*. Woodhead Publishing, 1999.
- [7]. Wingate, I. B. *Textile Fabrics and Their Selection*. Prentice Hall, 1976.
- [8]. Sinclair, R. *Textiles and Fashion: Materials, Design and Technology*. Woodhead Publishing, 2015.

- [9]. Kadolph, S. J. Textiles. Pearson Education, 2010.
- [10]. Dantyagi, V. Fundamentals of Textiles and Their Care. Orient Blackswan, 2002.
- [11]. Shenai, V. A. Technology of Textile Processing. Sevak Publications, 1998.
- [12]. Slater, K. Microstructural Principles of Textile Manufacture. Textile Institute, 1986.
- [13]. Adanur, S. Weltman's Textile Processing. CRC Press, 2001
- [14]. Kadic, E., & Milos, J. Automatic Fabric Defect Detection: Technologies and Methods. Elsevier, 2018.
- [15]. Montgomery, D. C. Statistical Quality Control: A Modern Introduction. Wiley, 2013.
- [16]. Govindan, N., & Jayapriya, J. (2017). "Analysis of Dyeing Defects in Knit Fabrics." Indian Journal of Textile Engineering.
- [17]. Sreeraj, M., & Krishnan, K. (2019). "Quality Issues in Knit Dyeing: Causes and Remedies." Journal of Textile Association.
- [18]. Raz, S. Autex Textile Handbook. AUTEX Research Institute, 2015.
- [19]. Zhang, Y., et al. (2020). "Machine Vision for Surface Quality Detection of Textiles." IEEE Transactions on Industrial Informatics.
- [20]. Nadiger, G. (2018). Quality Management in Textile and Apparel Production. NITRA Publications.
- [21]. Dhingra, A. K. (2014). "Six Sigma Approach in Reducing Fabric Defects." International Journal of Advanced Engineering Research.
- [22]. Palanisamy, E., & Ramakrishnan, S. (2016). "Defect Mapping Technique in Fabric Inspection." Asian Textile Journal.
- [23]. Ramesh, B., & Manickam, R. (2017). Knitted Fabric Structures and Quality. Woodhead Publishing India.
- [24]. Shenai, V. A. Technology of Finishing – Volume Series. Sevak Publications, 1995.
- [25]. Ghosh, S. (2010). Process Control in Textile Manufacturing. Woodhead Publishing.
- [26]. Kothari, V., & Das, A. (2012). Textile Sizing & Preparatory Processes. Woodhead Publishing.
- [27]. Chaudhuri, S. K. (2015). Principles of Fabric Inspection. New Age International Publishers.
- [28]. Grover, B., & Hamby, D. Handbook of Textile Testing and Quality Control. Wiley Eastern, 2001.
- [29]. Tuker, M., & Hines, T. (2016). Managing Quality in Fashion & Textiles Supply Chain. Routledge.
- [30]. Arora, S. (2018). "Evaluation of Finishing Defects in Cotton Fabrics." International Journal of Fashion Technology & Textile Engineering.
- [31]. Khan, A., et al. (2021). "Application of DMAIC in Textile Industry to Minimize Dyeing Defects." Journal of Textile Research & Innovation.
- [32]. Harlock, S., & Fothergill, L. The Textile Institute Book of Textile Finishing. Textile Institute, 2000.
- [33]. Carr, H. & Latham, B. The Technology of Clothing Manufacture. Blackwell Science, 1994.
- [34]. NITRA (Northern India Textile Research Association). Guidelines for Fabric Defect Classification. NITRA Technical Manual, 2020.
- [35]. AATCC. AATCC Test Method 101, 147, & 61 – Colour Fastness & Wet Processing Standards. AATCC Technical Manual, 2021.
- [36]. Senthilkumar, P. (2020). "Study on Common Knitted Fabric Defects in Dyeing and Finishing." Journal of Knitting Technology.
- [37]. BIS. IS 7704: Methods for Fabric Inspection. Bureau of Indian Standards, 2016.
- [38]. Fergusson, B. Fabric Defects: Causes and Remedies. Textile Institute Publications, 2005.
- [39]. American Association of Textile Chemists and Colorists (AATCC). Textile Testing Standards. AATCC Manual, 2018.
- [40]. Bureau of Indian Standards (BIS). Textile Quality Standards. BIS Publications, 2015.
- [41]. Cook, G. Handbook of Textile Fibres: Man-made Fibres. Woodhead Publishing, 2001.
- [42]. Hearle, J. W. S. Structural Mechanics of Fibres, Yarns, and Fabrics. Wiley-Inter science, 1969.