
Vol-9 Issue-4 2023 IJARIIE-ISSN(O)-2395-4396

21169 ijariie.com 1004

Software Data Reduction Methodologies

For Effective Bug Triage

MONIKA V S, Dr.M.Charles Arockiaraj

AMC ENGINEERING COLLEGE

ABSTRACT

Software companies experience a significant decline of over 45% in revenue due to software issues. Bug triage

plays a vital role in the bug-fixing process by assigning developers to new problems. To streamline and

reduce manual effort in bug triage, automatic bug triage uses text categorization algorithms. Our research

focuses on data reduction for bug triage, aiming to decrease data size while enhancing quality.

To achieve this, we combine instance and feature selection techniques to reduce the size of bug reports and

individual words. Using variables from existing bug datasets, we develop a prediction model to determine the

optimal sequence for applying instance and feature selection on a new bug dataset. To validate our approach,

we conduct an empirical analysis on a dataset comprising 600,000 bug reports from Eclipse and Mozilla, two

well-known open-source projects.

Our study's findings demonstrate that our proposed data reduction methodology effectively decreases data

size whileimproving bug triage accuracy. This research offers a valuable technique for employing data

processing methods to generate concise yet high-quality bug data in software development and maintenance

INTRODUCTION:

Software companies face a significant financial burden, allocating over 45% of their

expenses to resolve software-related issues. Bug triage is a crucial step in the bug fixing

process, involving precise assignment of developers to newly discovered bugs. Automated

bug triage utilizes text categorization algorithms to optimize resource allocation and reduce

costs. This research focuses on data reduction in bug triage, enhancing bug data quality

while reducing quantity.

We explore data reduction methods for bug reports and individual words, integrating

instance selection and feature selection techniques. A prediction model is developed to

determine the optimal sequence for applying these methods on a new bug dataset. Our

approach is validated through empirical analysis on a dataset of 600,000 bug reports from

Mozilla and Eclipse open-source projects.

Vol-9 Issue-4 2023 IJARIIE-ISSN(O)-2395-4396

21169 ijariie.com 1005

Results demonstrate the effectiveness of our proposed data reduction methodology, reducing data volume while

improving bug triage accuracy. Leveraging advanced data processing techniques, our research offers a practical

solution for concise and high-quality bug data generation, benefiting software development and maintenance

processes.

1. EXISTING SYSTEM:

• Hong et al. develop a social platform for software developers, enabling them to explore their contributions to the

Mozilla project using bug-related information. This platform enhances understanding of the developer community

and project progress.

• Xuan et al. analyze open-source software bug repositories, associating issue priority with specific developers.

This analysis provides insights into developer prioritization and streamlines software maintenance responsibilities.

• Zimmermann et al. conducted... conduct surveys among developers and customers

 participating in three open-source projects to evaluate problem-related data quality. Survey

results are used to identify crucial characteristics of effective bug reports and train a classifier

for further improvement identification.

2. PROPOSED SYSTEM:

This article explores data reduction in bug triage to minimize the volume of bug- related

data. Our main objective is to achieve cost savings, improved data quality, and a more

efficient bug triage workflow.

Data reduction in bug triage involves condensing bug data while maintaining its quality.

This includes tasks like eliminating redundant or irrelevant problem reports and phrases.

We focus on removing duplicate bug reports, merging similar reports, and filtering out

non- informative terms.

MODULES:

 Instance Selection

 Data Reduction

 Graph Module

DESCRIPTION OF MODULES:

Instance Selection:

Instance selection and feature selection are common techniques in data processing with diverse applications.

Instance selection involves extracting relevant instances from a dataset, such as bug reports from bug data,

Vol-9 Issue-4 2023 IJARIIE-ISSN(O)-2395-4396

21169 ijariie.com 1006

while feature extraction aims to extract relevant features, such as specific words, for a particular dataset used

in a specific application. The purpose of these techniques is to obtain subsets of important instances and

features within a dataset. In our study, we use a hybrid approach that combines instance selection and feature

selection methods customized for bug data.

Data Reduction:

Our research focuses on data reduction for bug triage, with the goals of reducing labor costs

and improving triage quality.

Addressing data sparsity: We aim to minimize gaps between data points, condensing the

dataset for better efficiency and manageability.

Enhancing triage reliability: Our objective is to improve bug assignment accuracy and

effectiveness, enhancing the dependability of the triage process.

Our approach involves preprocessing the dataset, seamlessly integrating with existing bug

triage procedures. Unlike previous studies that focused primarily on modeling bug reports as

text, our approach complements established triage methods. The following provides more

details on the objectives of data reduction.

Graph Module

This section consists of four components:

1. Initial component: Provides an overview of unresolved issues awaiting assignment to developers. The

administrator receives comprehensive status information to identify pending bugs.

2. Defects without assigned developers: Displays the number of bugs without assigned developers. It helps the

administrator track bugs awaiting responsibility.

3. Resolved bugs by developers: Indicates the number of bugs successfully addressed by developers. It

provides extensive

bug information to identify resolved issues.

4. Pending bugs for developers: Displays the count of bugs yet to be addressed by

developers. The administrator receives detailed information about unresolved issues.

Vol-9 Issue-4 2023 IJARIIE-ISSN(O)-2395-4396

21169 ijariie.com 1007

RESULT:

Vol-9 Issue-4 2023 IJARIIE-ISSN(O)-2395-4396

21169 ijariie.com 1008

Conclusion:

Software maintenance entails substantial costs in terms of labor and time, particularly during bug triage. By

extracting attributes from bug data sets and training a prediction model using historical data, we determine the

optimal sequence for applying instance selection and feature selection to new bug data sets. This serves as a

reference point for future data sets. Our empirical study focuses on data reduction techniques for bug triage,

utilizing repositories from Mozilla and Eclipse open-source projects. The study demonstrates how data

processing approaches can generate concise bug data sets without compromising quality, benefiting software

development and maintenance processes.

As part of our ongoing research, we aim to improve data reduction outcomes in bug triage. Our objective is to

explore effective methods for preparing high-quality domain-specific bug data collections. Additionally, This

effort will contribute to further advancements in our ability to predict optimal reduction sequences.

REFERENCE:

1. "Determining the Responsible Developer for Bug Fixing" was published by J. Anvik,

L. Hiew, and G. C. Murphy in the Proceedings of the 28th International Conference on

Software Engineering in May 2006, on pages 361–370.

2. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst, "Identifying

Bugs in Web Applications using Dynamic Test Generation and Explicit-State Model

Checking," IEEE Software, vol. 36, no. 4, pages 474–494, July/August 2010.

3. J. Anvik and G. C. Murphy authored a paper titled "Effort Reduction in Bug Report

Triage: Recommendations for Development-Oriented Decisions." It can be found in Volume

20, Issue 3 of the ACM Transactions on Software Engineering Methodology, published in

August 2011.

4. C. C. Aggarwal and P. Zhao, "Graphical Models for Text Processing," in Knowledge and

Information Systems, vol. 36, no. 1, pages 1–21, 2013 Bugzilla, (2014). [Online]. Available:

http://bugzilla.org/

5. K. Balog, L. Azzopardi, and M. de Rijke, "Formal Approaches for Identifying Experts in

Enterprise Corpora," in Proceedings of the 29th Annual International Conference of the

Association for Computing Machinery Special Interest Group on Research, Development,

and Information Retrieval, August 2006, pages 43–50.

6. P. S. Bishnu and V. Bhattacherjee, "Software Fault Prediction using Quad Tree-Based K-

means Clustering Algorithm," published in IEEE Transactions on Knowledge and Data

Engineering, vol. 24, no. 6, June 2012, pages 1146–1150.

7. H. Brighton and C. Mellish, "Advancements in Instance Selection for Instance-Based

Learning Algorithms," Data Mining and Knowledge Discovery, vol. 6, no. 2, pages 153–172,

April

http://bugzilla.org/

