
Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4226

SPEECH2CODE: Speech to Code Converter

Using AI

 Soham S. Kerimane
1
, Sufiyan U. Patel

2
, Parshwa S. Navale

3
, and Pushpender Sarao

4

1
 Student, Computer Science and Engineering, Sharad Institute of Technology College of Engineering,

Maharashtra, India
2
 Student, Computer Science and Engineering, Sharad Institute of Technology College of Engineering,

Maharashtra, India
3
 Student, Computer Science and Engineering, Sharad Institute of Technology College of Engineering,

Maharashtra, India
4
Head of Department , Computer Science and Engineering, Sharad Institute of Technology College of

Engineering, Maharashtra, India

ABSTRACT
Coding or programming plays an important role in a programmer's life and there are several ways we can minimize

the time it take to complete a code. Such as code editors provide various suggestions by seeing the starting letter of

the coding, there are several templates available on specific problem statements like searching algorithm, sorting

algorithm, etc. Automation is the technique to save the time as well as the cost of a program. Using Artificial

Intelligence we can generate such solutions which can solve the coding problems with the ideal origination

Keyword : Automation ,code editors, templates, Artificial Intelligence, searching algorithm, sorting algorithm

1. INTRODUCTION

 Coding or programming plays an important role in a programmer's life. And there are several ways we can

minimize the time it take to complete a code. such as code editors provide various suggestions by seeing the starting

letter of the coding, there are several templates available on a specific problem statements like searching algorithm,

sorting algorithm, etc. although it is true that we need some shortcuts to save the time in the coding, we have to

make sure the content as well as the quality of our code is better. And in some cases we need automation in our

coding like writing same code again and again, using same code block in different persona. In such cases it is better

to automate these things to save the valuable time. So in this project we are going to use the automation to the

completion of the code as our main solution. Using natural language processing and machine learning we are going

to find the feasible solution for our problem statement.

 In a big project, we need to write code in a more familiar way that anyone from our colleagues can read it

and understand it ideally. As long as we take care about the time, we have to make sure that it should take less time

and should contain code that is readable. Using automation we can achieve these types of goals by using machine

learning for understanding the problem statement and natural language processing for generating the specific

instructions

2. LITERATURE SURVEY

GitHub Copilot is an AI pair programmer. GitHub Copilot is powered by a new AI system developed by OpenAI

Codex and is coming soon to Visual Studio Code. It aims to help Programmers code faster. It basically draws

context from the code you’re working on, suggesting whole lines or entire functions. OpenAI Codex has a broad

knowledge of how people use code and is significantly more capable than GPT-3 in code generation.

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4227

It can suggest complete lines of code or entire functions by analyzing how you code. GitHub Copilot can assemble

code from user comments and predicts your code by just reading the function name you have declared. It allows you

to cycle through alternative suggestions and manually edit the suggested code. It autofill repetitive code, or create

unit tests for your methods.

The GitHub Copilot editor extension sends your comments and code to the GitHub Copilot service, which then uses

OpenAI Codex to synthesize and suggest code. it actually works by reading through all the open-source code on the

GitHub repos worldwide and then collect the data and tries to find the best possible code related to it! It is said to

work great with repetitive code patterns so users can let it generate the rest of the code. The AI assistant can also

help you learn a new programming language.

It is said to have been tested against a set of Python functions that have good test coverage in open source repos by

blanking out the function bodies and asked GitHub Copilot to fill them in. The model got this right 43% of the time

on the first try, and 57% of the time when allowed 10 attempts. And it’s getting smarter all the time.

GitHub Copilot tries to understand your intent and to generate the best code it can, but the code it suggests may not

always work or even make sense. “GitHub Copilot draws context from the code you’re working on, suggesting

whole lines or entire functions,” GitHub CEO Nat Friedman explained in a blog post introducing the technology.

The algorithm consistently improves by recording whether each suggestion is accepted or not.

The GitHub Copilot editor extension sends your comments and code to the GitHub Copilot service, which then uses

OpenAI Codex to synthesize and suggest code. it actually works by reading through all the open-source code on the

GitHub repos worldwide and then collect the data and tries to find the best possible code related to it! It is said to

work great with repetitive code patterns so users can let it generate the rest of the code. The AI assistant can also

help you learn a new programming language.

It is said to have been tested against a set of Python functions that have good test coverage in open source repos by

blanking out the function bodies and asked GitHub Copilot to fill them in. The model got this right 43% of the time

on the first try, and 57% of the time when allowed 10 attempts. And it’s getting smarter all the time.

In order to make the most out of it, it is suggested to divide the code into smaller functions, provide meaningful

function names, parameters, and docstrings.

3. METHODOLOGY

 Data Collection

 Data Pre-processing

 Converting to Categorical Data

 Training the Model

 Deployment of Model

3.1 Data Collection:

We are generating the data on our own. We will write a python script that will generate tons of statements and

then store it in a data frame. this dataframe contains multiple problem statement with their respective lables.

Eg.

Problem Statement Lable

write a function that can take 2 integers as the input [function, 2, integers]

write an if else condition [if-else condition]

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4228

3.2 Data Pre-processing:

Before training the model we have to convert the data into categorical format. We will use labelencoder()

a SKlearn library for that purpose. in data pre-processing we will mainly convert the text data into categorical

format.

we have used tensorflow tokenizer to tokenize the text and convert the string data into categorical format, converted

this tokenized data into sequences of integers. so we will get an array of some integers. finally we will add some

padding to normalize the array to a specific shape using tensorflow pad sequences.

for lables we have used onehotencoder() liberary to convert the data into categorical format as it contains multiple

datatypes, onehotencoder() gives the best performance amoung all the liberaries.

Training Model:

After getting all the data in a well good manner we will split the data into training and validation sets using sklearn

train_test_split() liberary by giving the 10% as the validation set.

We will use Tensorflow and keras for training the Neural Network. Then we will convert that model into a

javascriipt object notation format (JSON).

we need to use various libraries from tensorflow and keras such as modles, layers, intitializers and optimizers.

1. Model- Keras.models.Sequential

2. Layer-

 keras.layers.Embedding

 keras.layers.LSTM

 keras.layers.Dense

 keras.layers.Dropout

3. Initializer - keras.initializer.Constant

4. Optimizer - keras.optimizer.Adam

3.3 Deploying Model:

We will upload the trained model to a server and then access it from our web-app. So anyone with this web-app can

use this technology globally.

In our case we will upload the model on github and access that model in react js using tensorflow js library.

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4229

4. RESULTS AND DISCUSSION:

here's the final output of our project, a web app that can take problem statement in speech format and will provide

the solution code in the code snippet.

we have to press the microphone button, it will take our speech as the problem statement or we can just type it in the

input box. then after clicking on the compile button the system will understand the problem and according to the

selected programming language it will generate the solution.

Neural Networks:

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4230

5. CONCLUSION:

Thus, this project will give acceleration to developers who want to write code in a more advanced way. it will save

their time and efforts that they used to spend on written same as well as boring code again and again. As a matter of

fact when people use this technology, we will get more data from their code and we can improve our model's

performance using the new data recursively.

6. REFERENCES:

[1] Cwe-327: Use of a broken or risky cryptographic algorithm, 2006.

 URL https://cwe.mitre.org/data/definitions/327.html.

[2] Cwe-780: Use of rsa algorithm without oaep, 2009. URL https:

 //cwe.mitre.org/data/definitions/780.html.

[3] A6:2017-security misconfiguration, 2017. URL https:

 //owasp.org/www-project-top-ten/2017/

 A6 2017-Security Misconfiguration.html.

[4] Abid, A., Farooqi, M., and Zou, J. Persistent anti-muslim bias in

 large language models. arXiv preprint arXiv:2101.05783, 2021.

[5] Acemoglu, D. and Restrepo, P. Robots and jobs: Evidence from us

 labor markets. Journal of Political Economy, 128(6):2188–2244,

 2020a.

[6] Acemoglu, D. and Restrepo, P. The wrong kind of ai? artificial intelligence and the future of labour

demand. Cambridge Journal

 of Regions, Economy and Society, 13(1):25–35, 2020b.

[7] Agrawal, H., Horgan, J. R., London, S., and Wong, W. E. Fault

 localization using execution slices and dataflow tests. Proceedings of Sixth International Symposium

on Software Reliability

 Engineering. ISSRE’95, pp. 143–151, 1995.

[8] Allamanis, M., Tarlow, D., Gordon, A., and Wei, Y. Bimodal modelling of source code and natural

language. In Bach, F. and Blei,

 D. (eds.), Proceedings of the 32nd International Conference

 on Machine Learning, volume 37 of Proceedings of Machine

[9] Learning Research, pp. 2123–2132, Lille, France, 07–09 Jul

 2015. PMLR. URL http://proceedings.mlr.press/

https://cwe.mitre.org/data/definitions/327.html
http://proceedings.mlr.press/

Vol-8 Issue-3 2022 IJARIIE-ISSN(O)-2395-4396

17373 www.ijariie.com 4231

 v37/allamanis15.html.

[10] Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., and

 Church, G. M. Unified rational protein engineering with

 sequence-based deep representation learning. Nature methods,

 16(12):1315–1322, 2019.

