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ABSTRACT 

This paper describes a study of a three-queue network by analytical method. Its stability parameters will be 

highlighted in order to arrive at a more stable network model. 
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1. INTRODUCTION 

 

For a large network like the Internet, modeling will take a long time. The purpose of this 

chapter is to model a network of queues, and to predict the stability and the maximum load supported 

by the system. This automation will be done by load test or by increment. 

Performing this work involved the use of an algorithm to make modeling a network of queues 

easy, that is, without much manual intervention from a human administrator. The detection of 

bottlenecks remains to be specified in future work. 

 

2. CONSIDERED ARCHITECTURE 

Fig1 shows a network with three queues and its. Queues each have a single server, but in practice 

the number of servers in a queue is at least one[1]. 

This network has three entries Ei to queue i, for i varying from 1 to 3. For each entry Ei, the 

external arrival rate is γi and the average arrival rate is λi. 

Likewise, there are three exits Si with the probability ri0 of going from queue i to the exit. 

From the node point of view, the network has three loops on the same queue (on queue i, the 

probability of arrival is rii), normal interconnections (from queue i to queue j with the probability rij), 

interconnections back (from queue j to queue i with the probability rji where j is less than i). 

Fig.1 shows the general case of a three-queue network with its parameters. 
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Fig.1: General case of a three-queue network. 

 

The service rates are µi for queue i [2]. 

And the equilibrium probabilities for the outputs are such as: 

{

𝑟10 + 𝑟11 + 𝑟12 + 𝑟13 = 1
𝑟20 + 𝑟12 + 𝑟22 + 𝑟23 = 1
𝑟30 + 𝑟13 + 𝑟32 + 𝑟33 = 1

 

 

where ri0 are the probabilities of exiting the network from queue i. If there is only one S3 exit (from 

queue 3) then r10 and r20 will be zero. 

 

Note : 

For a closed network, the γi as well as the probabilities ri0 are all zero. That is, there is no external 

input and there is no output. 

3. SIMPLIFYING HYPOTHESIS 

a) ARCHITECTURE 

The consideration of all possible routing for this study can influence the computation time and the 

system resources. Arbitrary simplifications have been imposed. 

Indeed, there is only one input E1 and one output S3. Also, some routings have been eliminated, 

reducing some probabilities to zero, namely: r11, r13, r33, as well as the output probabilities r10 and 

r20. 

 

Fig.2: Three-queue network studied 
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The probability of going from lane 1 to lane 2 is one because that is the only possible direction 

from lane 1. The sum of the probabilities of going from lane 2 to all lanes is one. The sum of the 

probabilities of going from lane 3 to the exit and all lanes is one. 

On the other hand, the external arrival rates γ1 and γ2 are zero since there is no external arrival 

in queues 2 and 3. 

b) FORM OF THE NETWORK 

This approximation can be summed up by replacing a network with a non-produced form by a 

network with a produced form while keeping the same topology, changing each general service law by 

exponential service laws and a rate µi (n) depending on the charge. 

Next, it is necessary to determine the arrival rates depending on the load λi (n), by short-

circuiting station i and replacing all the other stations with a station C. It is also necessary to analyze 

each node of the network and determine the rate λi (n) of station i with n clients and the stationary 

probabilities pi (n). 

 

Note : 

All the results will be average values of the performance indices of the network and its 

stability conditions. Indeed, the state considered is the stationary state. 

c) STABILITY OF EACH QUEUE 

For a queue network to be considered stable, every node in the network must be stable. On the 

other hand, stability is only defined in a steady state. It will be considered that each node of the system 

to be designed has been manually verified and that they are all stable. Its stability in the system will 

then depend on the parameters of arrival from the previous node. 

d) TYPE OF NETWORK 

The network to be modeled is an open queue network. Indeed, a closed network is only 

considered in the case of network troubleshooting but in our case we are in the phase of modeling a 

network for use with several clients. In addition, the number of clients in a closed network is constant 

at all times since there are no additional clients, and the clients do not leave the network. 

4. STAGES OF THE STUDY 

To model a network of queues and have the result by simulation, it is necessary to have an 

algorithm which can extract the number of servers required, as well as the saturation load which is 

necessary to estimate the period of stability of the system. . But there are still some simplifications to 

be made. Indeed, if we consider all network cases, there should be several types of algorithm, which 

would increase the response time of the simulation.  
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Fig.3: Functional diagram of the test process. 

Consequently, this presents a lot of approximation in our case. But if the number of clients is 

large, the solution obtained will be approximate but the response time small [3]. 

It has already been seen that 

λj = γj + ∑ λ𝑖𝑟𝑖𝑗
𝑛
𝑖=1  

with j = 1, ..., 3 and n = 3 the number of queues. 

By developing this formula with three queues, the result is: 

{

𝜆1 = 𝛾1 + 𝑟11𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3
𝜆2 = 𝛾2 + 𝑟12𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3
𝜆3 = 𝛾3 + 𝑟13𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3

 {

(𝑟11 − 1)𝜆1  +  𝑟21𝜆2   + 𝑟31𝜆3    =  −𝛾1
𝑟12𝜆1  + (𝑟22 − 1)𝜆2  + 𝑟32𝜆3       =  −𝛾2
𝑟13𝜆1  +  𝑟23𝜆2 + (𝑟33 − 1)𝜆3       =  −𝛾3

 

 

For known r11, r21, r31, r21, r22, r23, r31, r32, r33, γ1, γ2 and γ3. 

Using the Gaussian n-unknown equation method, it is possible to find the λn.  

For a system to be stable, all the queues that make it up must be stable. This leads to 

{
  
 

  
 𝜌1 =

𝜆1
𝑚1𝜇1

< 1

𝜌2 =
𝜆2
𝑚2𝜇2

< 1

…………

𝜌𝑛 =
𝜆𝑛

𝑚𝑛𝜇𝑛
< 1

 

{
 
 

 
 𝑁1 =

𝜌1
(1 − 𝜌1)

𝑁2 =
𝜌2

(1 − 𝜌2)

𝑁3 =
𝜌3

(1 − 𝜌3)

 

 

 

for a three-queue network[4]. 

with m1, m2 and m3 are respectively the number of servers in queue 1, queue 2 and queue 3 and that 

µ1, µ2 and µ3 are respectively the average arrival rates of queue 1, queue 2 and queue 3. These data 

are previously given. 

Average residence time 

𝑅 =
𝑁

λ
=
𝑁1 +𝑁2 + 𝑁3
𝛾1 + 𝛾2 + 𝛾3

=
𝑁1 +𝑁2 +𝑁3

𝛾1
 

Because γ2  and γ3 are zero then λ = γ1 

The steady-state probability is therefore[5] 

∏(𝑥1 + 𝑥2 + 𝑥3) = [(1 − 𝜌1)𝜌1
𝑥1][(1 − 𝜌2)𝜌2

𝑥2][(1 − 𝜌3)𝜌3
𝑥3] 

Calculation of average arrival rates 

Calculation of occupancy rates 

Checking the stability of all queues 

Calculation of customer average number in each queue 

Calculation of average residence times in each queue 

Calculation of the average residence time in the network 
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Where x1 ≥ 0 ,x2 ≥ 0 et x3≥0  represent, respectively, the number of customers in the first, second and 

third rows. 

For what follows, the most important parameters are: on input the external arrival rates to be able to 

extract the average arrival rates in each lane, as well as the utilization rates or stability conditions at 

the output to establish the period system stability. 

a) EQUIVALENT NETWORK 

The entire network can be thought of as a single queue with equivalent parameters[6]. 

The average arrival rate λ (since there is only one entry in the network) is still displayed. 

Finally, the probability of the stationary distribution is displayed last, because it is the product of all 

the steady-state probabilities of all the queues. Fig.4 illustrates the assimilation of the system into a 

single queue. 

 

Fig.4 : Network equivalent to a queue. 

5. RESULTS 

For 3 queues, here is the conservation equation: 

{

𝜆1 = 𝛾1 + 𝑟11𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3
𝜆2 = 𝛾2 + 𝑟12𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3
𝜆3 = 𝛾3 + 𝑟13𝜆1 + 𝑟21𝜆2 + 𝑟31𝜆3

 {

(𝑟11 − 1)𝜆1  + 𝑟21𝜆2   + 𝑟31𝜆3    =  −𝛾1
𝑟12𝜆1  + (𝑟22 − 1)𝜆2  + 𝑟32𝜆3       =  −𝛾2 𝑤ℎ𝑒𝑟𝑒 𝛾2 = 0

𝑟13𝜆1  +  𝑟23𝜆2 + (𝑟33 − 1)𝜆3       =  −𝛾3  𝑤ℎ𝑒𝑟𝑒 𝛾3 = 0

 

 

The unknowns are λ1, λ2 et λ3. 

 

a) SYSTEM STABILITY 

ρi with i varying from one to three, is the rate of use or condition of stability of each queue. If its value 

is greater than or equal to one, then the system is unstable [7]. 

By considering several tests, the system can be stable or unstable. 

i) Unstable System 

Numerical data is represented in Tab1: 

Tab 1: Input parameters for unstable network simulation. 

QUEUE 1 QUEUE 2 QUEUE 3 

r11 =0 r21 =0.25 r31 =0.125 

r12 =1 r22 =0.25 r32 =0.125 

r13 =0 r23 =0.5 r33 =0.25 

m1 =4 m2 =6 m3 =5 

g1 =1500 g2 =0 g3 =0 

µ1 =800 µ2 =600 µ3 =600 
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So according to Tab8 and after calculation, the average arrival rates are given by 

ρ1 =  λ1/ m1 µ1=3000/4x800 

{

𝜆1 = 3000
𝜆2 = 4500
𝜆3 = 3000

 {

𝜌1 = 0,9375
𝜌2 = 1,25
𝜌3 = 1

 {
𝑁1 = 15
𝑁2 = −5
𝑁3 = ∞

 

 

So the system is unstable, the instability of the system can cause calculation errors which 

could give unpredictable results. 

Et N = N1 +  N2 +  N 3 = ∞ 

R = T = N/ λ = ∞/ 1500 = ∞ 

 

i) Stable System 

Numerical data is represented in Tab2: 

Tab 2: Input parameters for stable network simulation. 

QUEUE 1 QUEUE 2 QUEUE 3 

r11 =0 r21 =0.25 r31 =0.125 

r12 =1 r22 =0.25 r32 =0.125 

r13 =0 r23 =0.5 r33 =0.25 

m1 =4 m2 =6 m3 =5 

g1 =900 g2 =0 g3 =0 

µ1 =800 µ2 =800 µ3 =700 

 

For the calculation of the probability of the stationary distribution, the average values of the numbers 

of clients in each queue were taken. Which gives after calculation and according to Tab9, the external 

arrival rate, the utilization rate and the average number of customers in each queue: 

 

{

𝜆1 = 1800
𝜆2 = 2700
𝜆3 = 1800

 {

𝜌1 = 0,5625
𝜌2 = 0,5625
𝜌3 = 0,5143

 {

𝑁1 = 1,2857
𝑁2 = 1,2857
𝑁3 = 1,0589

 {

𝜋1 = 0,20879
𝜋2 = 0,20879
𝜋3 = 0,2402

 

 

And N = N1 +  N2 +  N 3 = 3,6303 

R = T = N/ λ = 3,6303/ 900 = 0,004 

 

Either π = π1 x π2 x π3 

Then π = 0,1003 

 

The data as well as the results of the two simulations can be compared from Tab3 and Tab4 [8]: 

Tab3: Initial data for simulations and analytical calculations: 

STABLE SYSTEM UNSTABLE SYSTEM 

QUEUE 1 QUEUE 2 QUEUE 3 QUEUE 1 QUEUE 2 QUEUE 3 

r11 =0 r21 =0.25 r31 =0.125 r11 =0 r21 =0.25 r31 =0.125 

r12 =1 r22 =0.25 r32 =0.125 r12 =1 r22 =0.25 r32 =0.125 

r13 =0 r23 =0.5 r33 =0.25 r13 =0 r23 =0.5 r33 =0.25 

m1 =4 m2 =6 m3 =5 m1 =4 m2 =6 m3 =5 

g1 =900 g2 =0 g3 =0 g1 =1500 g2 =0 g3 =0 

µ1 =800 µ2 =800 µ3 =700 µ1 =800 µ2 =600 µ3 =600 
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Tab4: Results of the two analytical calculations. 

STABLE SYSTEM UNSTABLE SYSTEM 

QUEUE 1 QUEUE 2 QUEUE 3 QUEUE 1 QUEUE 2 QUEUE 3 

N1 = 4 N2 = 6 N3 = 5 N1 = 4 N2 = 6 N3 = 5 

R1 = 0.00071 R2 = 0.00047 R3 = 0.00058 R1 = 0.005 R2 = 0.0033 R3 = ∞ 

λ1 =  1800 λ2 = 2700 λ3 = 1800 λ1 =  3000 λ2 = 4500 λ3 = 3000 

ρ1 = 0.5625 ρ2 = 0.5625 ρ3 = 0.5142 ρ1 = 0.9375 ρ2 = 0.9375 ρ3 = 1 

π1 = 0.2088 π2 = 0.2088 π3 = 0.2065 π1 = 0.0237 π2 = 0.0237 π3 = 0 

N = 3.63 λ = 1800 N = ∞ λ = 3000 

R = 0.004 π = 0.009 R = ∞ π = 0 

 

After several tests, the following two curves show the evolution of the stability of the system. 

Exceeding an arrival rate of 1100, the system is unstable but the first line is still stable. This is 

explained by the instability of the second or third queue of the network. The calculations are wrong, 

especially for the average number of customers in the network as well as the average transit time. 

From Figure 3.8, row # 2 tends to instability more quickly. This is after the # 1 row becomes unstable 

in turn, then the third row is the last to be unstable. 

Note: 

The number of clients N1 as well as the average crossing time R1 of the first queue have been 

demonstrated because only the first queue has external arrivals. 

The number of average customers in the network grows exponentially to an arrival rate of 1,100. This 

means that the expectations in the system increase as the system can no longer maintain quality of 

service. If the arrival rate exceeds 1100, the calculations are no longer correct due to the instability of 

the system. 

b) CROSSING TIME 

The results are summarized in Tab5 and in Fig.5;

 

Fig.5 : Average crossing time depending on the arrival rate. 
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Tab5: Miscellaneous results after variation in the arrival rate 

EA N R λ STABILITY 

100 0,218 0,0022 200 STABLE 

200 0,472 0,0024 400 STABLE 

300 0,771 0,0026 600 STABLE 

400 1,130 0,0028 800 STABLE 

500 1,569 0,0031 1000 STABLE 

600 2,122 0,0035 1200 STABLE 

700 2,844 0,0041 1400 STABLE 

800 3,842 0,0048 1600 STABLE 

825 4,156 0,0050 1650 STABLE 

850 4,506 0,0053 1700 STABLE 

875 4,899 0,0056 1750 STABLE 

900 5,345 0,0059 1800 STABLE 

1000 8,000 0,0080 2000 STABLE 

1100 14,892 0,0135 2200 STABLE 

1200 -12496 -10,413 2400 UNSTABLE 

1300 -5,766 -0,0044 2600 UNSTABLE 

1400 4,000 0,0029 2800 UNSTABLE 

1500 16,000 0,0107 3000 UNSTABLE 

1600 10000 10000 3200 UNSTABLE 

1700 13,541 0,0080 3400 UNSTABLE 

1800 -48,063 -0,0267 3600 UNSTABLE 

1900 -21,721 -0,0114 3800 UNSTABLE 

2000 -15,503 -0,0077 4000 UNSTABLE 

 

Average transit times increase exponentially up to an arrival rate of 1100. As the arrival rate increases 

and the service rate of the system remains unchanged, there is an increase in waiting time due. network 

overload. Which means the system is getting slow. If the arrival rate exceeds 1100, the first queue is 

stable, but the entire system is unstable. 

6. RESIZING 

Resizing a system is arbitrary. Indeed, it is possible to resize the network by increasing the number of 

queues, or by increasing the number of servers. This is to make the queue as well as the system more 

stable. Tab6 summarizes the stability conditions of the previous experiment. 
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Tab6 : Récapitulation de la stabilité de chaque files d’attente. 

EA ρ1 ρ2 ρ3 STABILITY 

100 0,063 0,083 0,057 STABLE 

200 0,125 0,167 0,114 STABLE 

300 0,188 0,250 0,171 STABLE 

400 0,250 0,333 0,229 STABLE 

500 0,313 0,417 0,286 STABLE 

600 0,375 0,500 0,343 STABLE 

700 0,438 0,583 0,400 STABLE 

800 0,500 0,667 0,457 STABLE 

825 0,516 0,688 0,471 STABLE 

850 0,531 0,708 0,486 STABLE 

875 0,547 0,729 0,500 STABLE 

900 0,563 0,750 0,514 STABLE 

1000 0,625 0,833 0,571 STABLE 

1100 0,688 0,917 0,629 STABLE 

1200 0,750 1,000 0,686 UNSTABLE 

1300 0,813 1,083 0,743 UNSTABLE 

1400 0,875 1,167 0,800 UNSTABLE 

1500 0,938 1,250 0,857 UNSTABLE 

1600 1,000 1,333 0,914 UNSTABLE 

1700 1,063 1,417 0,971 UNSTABLE 

1800 1,125 1,500 1,029 UNSTABLE 

1900 1,188 1,583 1,086 UNSTABLE 

2000 1,250 1,667 1,143 UNSTABLE 

 

Where EA denotes the external arrival rate to the network, N1 the average number of 

customers in the first queue. R1 designates the average crossing time of the second row. N designates 

the number of average clients in the network. R is the average traverse time of the entire network. 

Lambda refers to the average arrival rate in the network. r01 is the stability condition of the first row. 

If it is less than one, the network is stable. But if the network is unstable while ro1 is less than one then 

one of the queues other than the first is unstable. 

The 𝜌2 rate is the highest among ρi, and the 𝜌3 rate is the lowest. This means that the second queue is 

the most used among the three queues in the system. 

When 𝜌2 = 1, TA = 1200, which means the system has become unstable. So the lower the number of 

servers in queue # 2, the faster the system tends to instability. 

The following experiment takes place in three phases namely cas1 with six servers, cas2 with seven 

servers and cas3 with eight servers. The results are summarized in Tab8. After several test with a 

service rate set at 800 but a variable arrival rate (incremented by 100 after each measurement), Tab7 

summarizes the input parameters. 
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Tab7 : Fixed entries for experimentation 

QUEUE 1 QUEUE 2 QUEUE 3 

r11 =0 r21 =0.25 r31 =0.125 

r12 =1 r22 =0.25 r32 =0.125 

r13 =0 r23 =0.5 r33 =0.25 

m1 =4 m2 =6 m3 =5 

µ1 =800 µ2 =600 µ3 =700 

 

All the parameters of the third chapter for the stable system are kept except the external arrival rate 

which will be variable. 

After the 𝜌 utilization rate (i varying from 1 to 3) is equal to 1, the transit time and the number of 

clients are infinite in the network. 

For an experiment on the influence of the number of servers on the system. 

Tab8 : Variation of 𝝆2 for the three cases 

EA case1 : m=6 case2 : m=7 case3 : m=8 

100 0,083 0,077 0,062 

200 0,167 0,143 0,125 

300 0,25 0,214 0,187 

400 0,333 0,286 0,25 

500 0,417 0,357 0,312 

600 0,5 0,428 0,374 

700 0,583 0,5 0,437 

800 0,667 0,571 0,499 

900 0,75 0,643 0,562 

1000 0,833 0,714 0,625 

1100 0,917 0,786 0,687 

1200 1 0,857 0,75 

1300 1,083 0,928 0,812 

1400 1,167 1 0,87 

1500 1,25 1,07 0,937 

1600 1,333 1,143 0,999 

1700 1,417 1,214 1,06 

1800 1,5 1,285 1,125 

1900 1,583 1,357 1,187 

2000 1,667 1,429 1,25 

 

The purpose of the tests is to see the behavior of the second row for a variation in the external arrival 

rate. But after several additional tests, additional conclusions could be interpreted. Indeed, apart from 

the instability of the system, it should be noted that some data distorts the calculations. 

For the study of a network with three queues, having a bottleneck located on the second queue, and 

that the parameters of each queue have already been seen in the preceding tables, the proposal of a 

resizing in the second queue can be summed up by Tab9. 
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Tab9 : Sizing of the second queue. 

Number of 

server 

EA FOR THE 

THRESHOLD 

DIFFERENCE 

6 1200 0 

7 1400 200 

8 1700 500 

 

Which means that the most appropriate resizing is to increase the number of servers in the 

second queue to eight servers. Indeed, the arrival rate to reach the stability threshold goes from 1200 

to 1700. 

7. CONCLUSION 

This work consists of modeling a network of queues knowing its basic parameters as input. 

But it is still necessary to know each queue that makes up the network, to model them as a black box 

and to assess its performance and stability conditions. It was only after that there was the modeling of 

the entire network. 

The modeling generally requires the knowledge of the expected type of entry, but in our case it 

was assumed that the entry has the Poissonnian arrival process due to the uncertainty of the arrivals 

which can increase considerably depending on the type of network and the independence of each 

arrival on different intervals. 

This work had provided approximate solutions for large networks. A possible improvement 

too would be to research an exact-solution solving algorithm for multi-client systems to further 

improve simulations and final network implementation. 

Maintaining the stability of each node in the network is important because a single unstable 

node can destabilize the network, which would require knowledge of the node having the bottleneck. 
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